零售业强竞争,大数据如何帮助弱者角逐

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据时代,数据分析已经渗透到各行各业,这里也包括零售行业。目前,各大中小型零售商都在努力为客户提供更好的购物体验,用有限的预算为顾客提供满意的服务。零售商业内存在很强的竞争压力,不断的技术创新使得行业景观变化迅速。

  那么大数据分析将给零售行业带来怎样的影响,从业者又如何利用这样的影响实现快速超越呢?

  机器学习、人工智能等技术或许是一个可以迅速超车的手段。

  人工智能可通过机器学习、虚拟现实和语音处理等来增强现实,促进更好的客户体验。根据Gartner的报告,到2020年,AI将管理85%的零售客户互动。

  比如最近的亚马逊公司“亚马逊Go”杂货店和沃尔玛“货架扫描机器人”,就是机器学习和AI系统在零售业中的经典应用。

  但是,如果这些仅仅是作为概念证明,我们永远都不会知道技术会给我们带来什么。 像亚马逊和沃尔玛这样的公司虽然规模很大,但其实并不自满,他们仍然不断投资于技术,这给相对较小的网上商店和实体店带来巨大的竞争压力。

中小零售商面临的挑战

  •   中小型零售商正努力提供更好的购物体验,并以有限的预算为顾客提供满意的服务。

  •   中小零售商无法充分的利用资源去满足顾客的需求。

  •   中小零售商并没有分配足够的资源来识别有利可图的客户,以及可能的潜在客户,从而来定制营销和服务工作。

  •   许多人没有时间充分利用金钱来尝试提高营销投资回报率。

  •   个性化和产品推荐是由大公司在个人客户层面提供的,来提高转化率,这使得中小零售商难以将cart abandonment降到最低。

  •   中小型零售商也没有资源建立优化易腐/半易腐货物库存计划的解决方案,无法确保为最终客户提供正确的产品。

中小型零售商如何竞争

  通过授权组织内的个人利用大数据来准确而自信地做出决策,这些零售商可以更深入地了解客户并发现隐藏的趋势,从而揭示新的机会。 大数据分析在每个阶段都有应用程序,可以帮助预测趋势(季节性和其他)和需求,从而隔离客户的兴趣和理解并预测客户行为。

  我们来看看一些对零售行业有用的常用技术。

客户行为和预测分析

  您可以使用数据分析来找到潜在客户,激励他们购买更多商品的关键驱动因素,以及实现这些目标的最佳方式,可以通过社交媒体,电子商务等多种渠道与客户进行互动。 此外,可以在店内使用位置分析,以帮助更好地了解人们的购买行为并监控消费者流量。 客户的购买和浏览历史(店内和在线)可用于预测需求和兴趣并实现客户的个性化促销。

运营分析和供应链分析

  零售商可以使用分析来优化供应链和产品分销以缩减价格。 您可以将结构化数据与非结构化数据进行组合,然后使用此数据来发现异常值,进行根本原因的分析、解析,然后重新构建和可视化数据。

其他一些数据驱动的方法包括:

  •   文本挖掘算法自动到达物品和订单数量。

  •   深度学习技术,如卷积网识别和分析。

  •   使用文本挖掘进行客户情绪分析。

  •   客户生命周期价值(CLTV)评分可识别需要定位或重新激活的特定客户。

  •   使用类似于第三方数据库的建模来识别类似于高价值客户的配置文件。

  •   创造独特的客户角色。

  •   通过过去的购买行为和时间分析来识别客户最有可能购买的潜在产品。

  •   根据客户角色和购买行为推荐更多相关的产品。

  •   通过在当天正确的时间推荐合适的产品来增强最终用户体验。

  中小零售商可以通过大数据分析技术重新开始一段旅程,以应对数据分析带来的挑战和机遇,但是开始的过程可能很艰苦,零售商可以寻求服务提供商(如Techvantage Systems)的帮助,这些服务提供商在这个领域经验丰富,并且已经构建了类似的解决方案,可以帮助零售商带来良好的开局。


原文发布时间为:2018-06-4

本文作者:刘美利

本文来自云栖社区合作伙伴“IT168”,了解相关信息可以关注“IT168”。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
20天前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
3月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
66 0
|
传感器 供应链 监控
大数据、物联网、机器人和现代技术如何彻底改变零售业
零售业稳定增长的因素之一是数字化和现代技术的兴起,并由此催生了零售 4.0 。引进先进技术后,零售工作流程中的采购、库存管理、客户服务、账户和供应链管理等多个流程变得自动化。
380 0
大数据、物联网、机器人和现代技术如何彻底改变零售业
下一篇
无影云桌面