商务部:社区零售业步入“黄金发展期” 大数据挖掘正当时

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本报记者 夏旭田 实习生 李祺祺 北京报道

  记者 夏旭田 实习生 李祺祺 北京报道

一边是传统百货业日益黯淡,一边是社区零售业步入快速发展期。中国的零售行业,正在酝酿着日渐清晰的商业形态的变革。

据商务部7月3日发布的《中国零售行业发展报告(2016/2017年)》(下称报告),中国商品零售额在经历了长达5年的增速回落之后,2016年有触底的迹象。当年10.4%的增速虽然仍比上年低了0.2个百分点,但降幅比上年收窄1.4个百分点。

从数据上看,中国的实体零售业出现了结构性回暖:便利店、社区购物中心等社区商业由于正在进入黄金发展期,由于选址空间大、贴近消费者、营业时间长等优势,在互联网技术改造后的社区商业正在各个社区快速扩张、渗透。但另一方面,传统的专业店、百货店增长依旧乏力,千店一面、千店同品现象突出,部分地区存在结构性过剩。

值得注意的是,新的ICT技术正在重塑中国的零售业,去年移动支付扩张迅速,这在为消费者、经营者提供便利的同时,也成为搜集消费者数据、商品数据的重要入口。

社区商业进入发展黄金期

商务部的报告指出,在宏观经济增速不断放缓,场地租金攀升、企业利润下降的大环境下,门店越开越小,俨然已成为我国实体零售不可阻挡的发展趋势。

在此背景下,便利店、精品超市、社区型购物中心等社区商业将成为零售企业寻求转型升级的重要方向,社区商业已经进入黄金发展期。

根据商务部6月底发布的《中国便利店景气指数报告》,2017年一季度中国便利店景气指数为72.2,高出荣枯线22.2,体现出从业者对行业发展趋势总体持乐观态度。

2016年,中国便利店行业的门店总数同比增长9%,销售规模同比增长13%,门店数量与销售规模保持着较高的增长速度。尤其是便利店单店营业面积小、选址灵活,有利于其快速扩张。

消费领域著名专家、中国贸促会研究院研究员赵萍告诉21世纪经济报道记者,现在的便利店和以往不同,前者是基于O2O概念拓展的新型业态,虽然看起来仍是实体零售业,但都离不开线上线下的互动,比如通过云藏储进行分仓、通过大数据实现就近配送。除了便利之外,更多地引入了电商的基因,这是便利店发展火爆的重要原因。

另一方面,赵萍指出,中国的社区零售在更适应消费者需求的网点选址上具备更大空间。此前,实体零售业大都位于城市商业中心和地区商业中心。目前,商业中心,尤其是三四线城市购物中心出现了严重的结构性过剩。而社区层面上,还有不少黄金网点可供挖掘,小型的、便民的社区业态在选址、节约成本上也有更大空间。

报告也指出,传统零售网点发展不均衡、结构性过剩的问题凸显,中心城区商业网点集中,商业体建设过剩,同质化竞争严重,导致企业盈利困难。业态上,大型百货店、超级市场渐趋饱和。

据联商网不完全统计,2016年全国范围百货与购物中心业态关闭56家门店,大型超市业态关闭129家门店。而“最后一公里”社区商业仍处于初级阶段,以每百万人拥有社区便利店店铺数量统计,日本388家,台湾地区425家,中国大陆城市平均为54家。

报告指出,伴随着我国社区零售整合化、全渠道发展进程逐步加快,投资成本低、成熟周期短的社区零售必将成为支撑行业发展的重要推手。从长期的发展来看,“小而美”的社区化零售业态将更符合新形势下消费市场的客观需求。

赵萍表示,社区商业不仅是“小而美”,也可能是“大而美”,在电商整合以及大型零售企业开始布局便利店的背景下,可能会逐渐形成以便利店小业态为主的大企业。

一个典型就是连锁品牌化便利店的快速扩张。据中国连锁经营协会数据,2016年我国连锁便利店品牌超过260个,门店数达9.8万家,同比增长9%;销售额达1334亿元,同比增长9%;单店日均销售额达3714元,同比增长4%。

在赵萍看来,连锁有利于对便利店的统一配送,并形成自身的品牌效应,集客能力比其他单店更强;通过统一管理统一运作,更容易与电商平台相结合,实现线上线下互动发展O2O模式。

移动支付数据挖掘快速成长

值得注意的一个特征是,中国零售市场正呈现出明显的“新消费、新零售和新生态”特征:互联网技术创新应用活跃,整合全渠道资源,提供线上线下一体化服务,支付方式更加多元高效,品牌连锁经营快速发展,零售商品结构不断升级。

商务部流通业发展司一位负责人表示,在新零售时代,线上线下深度融合成为常态,实体零售与网络电商逐步从独立、对抗向融合协作、优势互补、实现共赢的方向发展。在此过程中,信息化技术驱动占主导地位,大数据、物联网、人脸识别、移动支付等信息技术为企业创新升级提供了技术支撑。

尤其是伴随智能手机的普及,网络支付场景极大丰富,2016年支付宝、微信等移动支付方式在实体门店迅速普及。

根据中国互联网络信息中心最新调查数据显示,网民在实体店购物结算使用手机支付的比例高达50.3%,农村地区使用率也已达到31.7%。2016年底,手机网上支付用户规模达到4.7亿人,比上年增长31.2%,渗透率达到67.5%,比去年提高9.8个百分点。

赵萍表示,移动支付为实体店的转型升级带来了巨大契机,她认为,未来实体店的发展,需要对线下客户、商品有一个数据化的过程。按照此前的方法,持续推进数据化成本很高,将两者精准匹配更是非常难。但移动支付的普及使个人信息与商品信息直接挂钩,在消费者觉得支付便利的同时,完成了数据收集与匹配。

“通过移动支付,实体店进行大数据分析、精准营销也有了特别便利的手段,现在的移动支付还可以与客户社交功能发生联系,实现精准推送、定期沟通。”她表示。

报告称,截至2016年12月,全国企业开展在线销售的比例已经达到45.3%,比上年提高12.7个百分点。零售企业积极提升门店数字化水平,打通线上线下商品、客户、订单信息,更好匹配顾客、商品、场地等零售要素,提升运营效率。

报告指出,互联网零售企业基于自身优势,已在数据挖掘、数据决策领域取得了显著成效,但中国大部分传统零售企业数据基础较为薄弱,在数据挖掘方面仍有巨大的发展潜力。

在客户数据方面,赵萍表示,此前零售业几乎没有相关数据,仅有的会员数据往往只有一个手机号,很难产生价值。数据获取上,我国传统零售企业收集数据方式较为单一,主要是POS机数据和历史交易数据,消费者行为数据缺失。

不过报告指出,目前实体店收集行为数据的技术已非空白,如沃尔玛在手推车上追加跟踪器,根据推车路径改进货架摆放;银泰、大悦城等大型零售企业通过进店WiFi、二维码等方式与顾客交互。

但报告也指出,传统零售企业数据管理技术较为薄弱,数据细粒度不够,数据标准化、数据孤岛问题尚未解决,不能从海量数据中高效地获取关键机会洞察点,数据应用范围大部分局限于商品品类分析报表。数据全面驱动经营决策的发展格局尚未形成。

零售行业的大数据挖掘、精准营销正刚刚“破题”。





本文出处:畅享网
本文来自云栖社区合作伙伴畅享网,了解相关信息可以关注vsharing.com网站。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
网络协议 大数据 数据挖掘
文献丨多组学大数据构建小麦穗发育转录调控网络,TRN+GWAS挖掘关键转录调控(二)
文献丨多组学大数据构建小麦穗发育转录调控网络,TRN+GWAS挖掘关键转录调控(二)
|
9月前
|
数据采集 数据可视化 算法
电商API接口的大数据分析与挖掘技巧
随着电商行业的快速发展,电商平台上的交易数据量也越来越大。如何对这些数据进行分析和挖掘,从中获取有价值的信息,已经成为电商企业和开发者关注的重点。本文将介绍电商API接口的大数据分析与挖掘技巧。
|
1月前
|
机器学习/深度学习 人工智能 分布式计算
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
115 35
|
20天前
|
数据采集 存储 机器学习/深度学习
数据的秘密:如何用大数据分析挖掘商业价值
数据的秘密:如何用大数据分析挖掘商业价值
46 9
|
3月前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
7月前
|
存储 监控 数据挖掘
云上大数据分析平台:赋能企业决策,挖掘数据金矿
5.3 场景化 针对不同行业和领域的需求特点,云上大数据分析平台将推出更多场景化的解决方案。这些解决方案将结合行业特点和业务场景进行
335 7
|
6月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
107 0
|
6月前
|
SQL 开发框架 大数据
【数据挖掘】顺丰科技2022年秋招大数据挖掘与分析工程师笔试题
顺丰科技2022年秋招大数据挖掘与分析工程师笔试题解析,涵盖了多领域选择题和编程题,包括动态规划、数据库封锁协议、概率论、SQL、排序算法等知识点。
117 0
|
9月前
|
存储 分布式计算 算法
大数据处理:挖掘价值之道
大数据处理:挖掘价值之道
|
9月前
|
机器学习/深度学习 算法 数据挖掘
【大数据分析与挖掘技术】概述
【大数据分析与挖掘技术】概述
141 1