numpy中dot与*的区别

简介: dot是矩阵相乘,只要矩阵满足前一个矩阵的列与后一个矩阵的行相匹配即可 *是遵循numpy中的广播机制,必须保证行列相对应才可以进行运算先看一则正例>>import numpy as np#test1与test2行列相同>>test1 = np.

dot是矩阵相乘,只要矩阵满足前一个矩阵的列与后一个矩阵的行相匹配即可

*是遵循numpy中的广播机制,必须保证行列相对应才可以进行运算

先看一则正例

>>import numpy as np
#test1与test2行列相同
>>test1 = np.array([[1,2],[3,4]])
>>test2 = np.array([[3,3],[2,2]])
>>test1 * test2
array([[3, 6],
       [6, 8]])
>>np.dot(test1,test2)
array([[ 7,  7],
       [17, 17]])

再看一则反例

#test3与test4行列数不相同
>>test3 = np.array([[1,2],[2,3]])
>>test4 = np.array([[2,3,4],[4,5,6]])
>>test3*test4
Traceback (most recent call last):
  File "<input>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (2,2) (2,3) 
>>np.dot(test3,test4)
array([[10, 13, 16],
       [16, 21, 26]])

很明显,错误信息是由于test3中的(2,2)与test4(2,3)行列不匹配,故不可以进行*运算,而dot则可以因为test3中的列2 = test4中的行2

目录
相关文章
NumPy的深浅拷贝的区别与选择
关于深浅拷贝如何进行选择, 我们需要根据实际的项目需求进行使用,选择正确的拷贝方式不但能够节省内存空间,而且在效率上也会大大提高,这也是我们在项目优化方面需要进行考虑的。
|
Python
【Numpy】深入剖析Numpy.arange()与range()的区别
【Numpy】深入剖析Numpy.arange()与range()的区别
353 0
|
Python
numpy数组中冒号[:,:,0]与[...,0]的区别
x[:,:,0] 意思是对数组x切片,可以想象成一个正方体数据,每次切下一个面的数据。第二维取0则得出来[3,4]大小的数组
407 0
|
机器学习/深度学习 存储 Serverless
NumPy 与 Python 内置列表计算标准差的区别
NumPy,是 Numerical Python 的简称,用于高性能科学计算和数据分析的基础包,像数学科学工具(pandas)和框架(Scikit-learn)中都使用到了 NumPy 这个包。
|
1月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
276 1
|
1月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
121 0
|
3月前
|
机器学习/深度学习 API 异构计算
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
JAX是Google开发的高性能数值计算库,旨在解决NumPy在现代计算需求下的局限性。它不仅兼容NumPy的API,还引入了自动微分、GPU/TPU加速和即时编译(JIT)等关键功能,显著提升了计算效率。JAX适用于机器学习、科学模拟等需要大规模计算和梯度优化的场景,为Python在高性能计算领域开辟了新路径。
315 0
JAX快速上手:从NumPy到GPU加速的Python高性能计算库入门教程
|
3月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
307 0
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
310 1
|
机器学习/深度学习 数据处理 计算机视觉
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
171 0

热门文章

最新文章