入门项目数字手写体识别:使用Keras完成CNN模型搭建

简介: 本文是通过Keras实现深度学习入门项目——数字手写体识别,整个流程介绍比较详细,适合初学者上手实践。

       对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一。在面部识别、自动驾驶、物体检测等领域,CNN被广泛使用,并都取得了最优性能。对于绝大多数深度学习新手而言,数字手写体识别任务可能是第一个上手的项目,网络上也充斥着各种各样的成熟工具箱的相关代码,新手在利用相关工具箱跑一遍程序后就能立刻得到很好的结果,这时候获得的感受只有一个——深度学习真神奇,却没能真正了解整个算法的具体流程。本文将利用Keras和TensorFlow设计一个简单的二维卷积神经网络(CNN)模型,手把手教你用代码完成MNIST数字识别任务,便于理解深度学习的整个流程。

1

准备数据

       模型使用的MNIST数据集,该数据集是目前最大的数字手写体数据集(0~9),总共包含60,000张训练图像和10,000张测试图像,每张图像的大小为28x28,灰度图。第一步是加载数据集,可以通过Keras API完成:

#源代码不能直接下载,在这里进行稍微修改,下载数据集后指定路径
#下载链接:https://pan.baidu.com/s/1jH6uFFC 密码: dw3d

from __future__ import print_function
import keras
import numpy as np  
path='./mnist.npz'  
f = np.load(path) 
X_train, y_train = f['x_train'], f['y_train']  
X_test, y_test = f['x_test'], f['y_test'] 

       上述代码中,X_train表示训练数据集,总共60,000张28x28大小的手写体图像,y_train表示训练图像对应的标签。同理,X_test表示测试数据集,总共10,000张28x28大小的手写体图像,y_test表示测试图像对应的标签。下面对数据集部分数据进行可视化,以便更好地了解构建的模型深度学习模型的目的。

import matplotlib.pyplot as plt
fig = plt.figure()
for i in range(9):
  plt.subplot(3,3,i+1)
  plt.tight_layout()
  plt.imshow(X_train[i], cmap='gray', interpolation='none')
  plt.title("Digit: {}".format(y_train[i]))
  plt.xticks([])
  plt.yticks([])
fig

2


       从图中可以看到,左上角是存储在训练集X_train[0]的手写体图像‘5’,y_train[0]表示对应的标签‘5’。整个深度学习模型的功能是训练好之后能够预测出别人手写的数字具体是什么。
       对于神经网络而言,一般需要对原始数据进行预处理。常见的预处理方式是调整图像大小、对像素值进行归一化等。
# let's print the actual data shape before we reshape and normalize
print("X_train shape", X_train.shape)
print("y_train shape", y_train.shape)
print("X_test shape", X_test.shape)
print("y_test shape", y_test.shape)

#input image size 28*28
img_rows , img_cols = 28, 28

#reshaping
#"channels_first" assumes (channels, conv_dim1, conv_dim2, conv_dim3).
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
#more reshaping
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape) #X_train shape: (60000, 28, 28, 1)

       对图像信息进行必要的处理之后,标签数据y_train和y_test被转换为分类格式(向量形式),即标签‘3’被转换为向量[ 0,0,0,1,0,0,0,0,0,0]用于建模,标签向量非零的位置减一(从0开始)后表示该图像的具体标签,即若图像的标签向量在下标5处不为0,则表示该图像代表数字‘4’。

import keras
#set number of categories
num_category = 10
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_category)
y_test = keras.utils.to_categorical(y_test, num_category)

构建和编译模型

       在数据准备好提供给模型后,需要定义模型的体系结构并使用必要的优化函数损失函数性能指标进行编译。
       构建模型遵循的体系结构是经典卷积神经网络,分别含有2个卷积层,之后是连接全连接层和softmax分类器。如果你对每层的作用不熟悉的话,建议学习CS231课程
       在最大池化层和全连接层之后,模型中引入dropout作为正则化来减少过拟合问题。

#导入相关层的结构
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from keras import backend as k
import matplotlib.pyplot as plt
import numpy as np

## model building
model = Sequential()
#convolutional layer with rectified linear unit activation
model.add(Conv2D(32, kernel_size=(3, 3),
                 activation='relu',
                 input_shape=input_shape))
#32 convolution filters used each of size 3x3
#again
model.add(Conv2D(64, (3, 3), activation='relu'))
#64 convolution filters used each of size 3x3
#choose the best features via pooling
model.add(MaxPooling2D(pool_size=(2, 2)))
#randomly turn neurons on and off to improve convergence
model.add(Dropout(0.25))
#flatten since too many dimensions, we only want a classification output
model.add(Flatten())
#fully connected to get all relevant data
model.add(Dense(128, activation='relu'))
#one more dropout for convergence' sake :) 
model.add(Dropout(0.5))
#output a softmax to squash the matrix into output probabilities
model.add(Dense(num_category, activation='softmax'))

       模型搭建好之后,需要进行编译。在本文使用categorical_crossentropy多分类损失函数。由于所有的标签都具有相似的权重,因此将其作为性能指标,并使用AdaDelta梯度下降技术来优化模型参数。

#Adaptive learning rate (adaDelta) is a popular form of gradient descent rivaled only by adam and adagrad
#categorical ce since we have multiple classes (10) 
model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adadelta(),
              metrics=['accuracy'])

训练和评估模型

       在定义和编译模型架构之后,需要使用训练数据对模型进行训练,以便能够识别手写数字。即使用X_train和y_train来拟合模型。

batch_size = 128
num_epoch = 10
#model training
model_log = model.fit(X_train, y_train,
          batch_size=batch_size,
          epochs=num_epoch,
          verbose=1,
          validation_data=(X_test, y_test))

       Epoch表示对所有训练样本进行一个前向传播过程和一个反向传播过程,Batch_Size表示每次前向过程和反向过程时处理的训练样本数,训练输出如下所示:

3


       模型训练好后需要评估其性能:
score = model.evaluate(X_test, y_test, verbose=0)
print('Test loss:', score[0]) #Test loss: 0.0296396646054
print('Test accuracy:', score[1]) #Test accuracy: 0.9904

       可以看到,测试准确性高达99%+,这也意味着该模型对于预测训练得很好。对整个过程训练和测试过程进行可视化,即画出训练和测试的准确曲线与损失函数曲线,如下所示。从图中可以看到,随着训练迭代次数的增加,模型在训练和测试数据上的损失和准确性趋于一致,模型最终趋于稳定。

4

保存模型参数

       模型训练好后需要保存训练好的参数,以便下次直接调用。模型的体系结构或结构将存储在json文件中,权重将以hdf5文件格式存储。

#Save the model
# serialize model to JSON
model_digit_json = model.to_json()
with open("model_digit.json", "w") as json_file:
    json_file.write(model_digit_json)
# serialize weights to HDF5
model.save_weights("model_digit.h5")
print("Saved model to disk")

       因此,保存好的模型可以之后进行重复使用或轻易地迁移到其他应用场景中。

数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!

作者信息

Sambit Mahapatra,人工智能和机器学习爱好者
个人主页:https://github.com/sambit9238/
本文由阿里云云栖社区组织翻译。
文章原标题《A simple 2D CNN for MNIST digit recognition》,译者:海棠,审校:Uncle_LLD
文章为简译,更为详细的内容,请查看原文

相关文章
|
1月前
|
机器学习/深度学习 存储 人工智能
【AI系统】轻量级CNN模型综述
本文介绍了几种常见的小型化CNN模型,包括SqueezeNet、ShuffleNet、MobileNet等系列。这些模型通过减少参数量和计算量,实现在有限资源下高效运行,适用于存储和算力受限的场景。文章详细解释了各模型的核心技术和优化策略,如Fire Module、Channel Shuffle、Depthwise Separable Convolutions等,旨在帮助读者理解和应用这些高效的小型化CNN模型。
47 3
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
254 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
3月前
|
机器学习/深度学习 编解码 算法
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5
69 0
|
4月前
|
机器学习/深度学习 人工智能 算法
深度学习中的卷积神经网络(CNN)入门与实践
【9月更文挑战第19天】在这篇文章中,我们将探索深度学习的一个重要分支——卷积神经网络(CNN)。从基础概念出发,逐步深入到CNN的工作原理和实际应用。文章旨在为初学者提供一个清晰的学习路径,并分享一些实用的编程技巧,帮助读者快速上手实践CNN项目。
|
4月前
|
机器学习/深度学习
ACM MM24:复旦提出首个基于扩散模型的视频非限制性对抗攻击框架,主流CNN和ViT架构都防不住它
【9月更文挑战第23天】复旦大学研究团队提出了ReToMe-VA,一种基于扩散模型的视频非限制性对抗攻击框架,通过时间步长对抗性潜在优化(TALO)与递归令牌合并(ReToMe)策略,实现了高转移性且难以察觉的对抗性视频生成。TALO优化去噪步骤扰动,提升空间难以察觉性及计算效率;ReToMe则确保时间一致性,增强帧间交互。实验表明,ReToMe-VA在攻击转移性上超越现有方法,但面临计算成本高、实时应用受限及隐私安全等挑战。[论文链接](http://arxiv.org/abs/2408.05479)
96 3
|
4月前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:理解卷积神经网络(CNN)
【9月更文挑战第14天】本文旨在为初学者提供一个关于卷积神经网络(CNN)的直观理解,通过简单的语言和比喻来揭示这一深度学习模型如何识别图像。我们将一起探索CNN的基本组成,包括卷积层、激活函数、池化层和全连接层,并了解它们如何协同工作以实现图像分类任务。文章末尾将给出一个简单的代码示例,帮助读者更好地理解CNN的工作原理。
64 7
|
3月前
|
机器学习/深度学习 PyTorch API
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
深度学习入门:卷积神经网络 | CNN概述,图像基础知识,卷积层,池化层(超详解!!!)
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门
【8月更文挑战第31天】在人工智能的浪潮中,深度学习以其强大的数据处理能力成为时代的宠儿。本文将引导你走进深度学习的核心组件之一——卷积神经网络(CNN),并带你一探其背后的奥秘。通过简明的语言和直观的代码示例,我们将一起构建一个简易的CNN模型,理解它在图像处理领域的应用,并探索如何利用Python和TensorFlow实现它。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。

热门文章

最新文章