美团在Redis上踩过的一些坑-4.redis内存使用优化

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 Tair(兼容Redis),内存型 2GB
简介:   转载请注明出处哈:http://carlosfu.iteye.com/blog/2254154       一、背景: 选择合适的使用场景    很多时候Redis被误解并乱用了,造成的Redis印象:耗内存、价格成本很高:    1. 为了“赶时髦”或者对于Mysql的“误解”在一个并发量很低的系统使用Redis,将原来放在Mysql数据全部放在Redis中。
 

转载请注明出处哈:http://carlosfu.iteye.com/blog/2254154


    

 一、背景: 选择合适的使用场景
   很多时候Redis被误解并乱用了,造成的Redis印象:耗内存、价格成本很高:
   1. 为了“赶时髦”或者对于Mysql的“误解”在一个并发量很低的系统使用Redis,将原来放在Mysql数据全部放在Redis中。
     ----(Redis比较适用于高并发系统,如果是一些复杂Mis系统,用Redis反而麻烦,因为单从功能讲Mysql要更为强大,而且Mysql的性能其实已经足够了。)
   2. 觉得Redis就是个KV缓存
     -----(Redis支持多数据结构,并且具有很多其他丰富的功能)
   3. 喜欢做各种对比,比如Mysql, Hbase, Redis等等
    -----(每种数据库都有自己的使用场景,比如Hbase吧,我们系统的个性化数据有1T,此时放在Redis根本就不合适,而是将一些热点数据放在Redis)
    总之就是在合适的场景,选择合适的数据库产品。
  附赠两个名言:
Evan Weaver, Twitter, March 2009 写道
Everything runs from memory in Web 2.0!
Tim Gray 写道
Tape is Dead, Disk is Tape, Flash is Disk, RAM Locality is king.
(磁带已死,磁盘是新磁带,闪存是新磁盘,随机存储器局部性是为王道)
  
二、一次string转化为hash的优化
1. 场景:
    用户id: userId,
    用户微博数量:weiboCount    
userId(用户id) weiboCount(微博数)
1 2000
2

10

3

288

.... ...
1000000 1000
 
2. 实现方法:
(1) 使用Redis字符串数据结构, userId为key, weiboCount作为Value
(2) 使用Redis哈希结构,hashkey只有一个, key="allUserWeiboCount",field=userId,fieldValue= weiboCount
(3) 使用Redis哈希结构,  hashkey为多个, key=userId/100, field=userId%100, fieldValue= weiboCount
前两种比较容易理解,第三种方案解释一下:每个hashKey存放100个hash-kv,field=userId%100,也就是
userId hashKey field
1 0 1
2 0

2

3 0

3

... .... ...
99 0 99
100 1 0
101 1 1
.... ... ...
9999 99 99
100000 1000 0

 

注意:

为了排除共享对象的问题,在真实测试时候所有key,field,value都用字符串类型。

 

3. 获取方法:

 

#获取userId=5003用户的微博数
(1) get u:5003
(2) hget allUser u:5003
(3) hget u:50 f:3

 

 

4. 内存占用量对比(100万用户 userId u:1~u:1000000) 

  

#方法一 Memory
used_memory:118002640
used_memory_human:112.54M
used_memory_rss:127504384
used_memory_peak:118002640
used_memory_peak_human:112.54M
used_memory_lua:36864
mem_fragmentation_ratio:1.08
mem_allocator:jemalloc-3.6.0
---------------------------------------------------
#方法二 Memory
used_memory:134002968
used_memory_human:127.80M
used_memory_rss:144261120
used_memory_peak:134002968
used_memory_peak_human:127.80M
used_memory_lua:36864
mem_fragmentation_ratio:1.08
mem_allocator:jemalloc-3.6.0
--------------------------------------------------------
#方法三 Memory
used_memory:19249088
used_memory_human:18.36M
used_memory_rss:26558464
used_memory_peak:134002968
used_memory_peak_human:127.80M
used_memory_lua:36864
mem_fragmentation_ratio:1.38
mem_allocator:jemalloc-3.6.0

  

 那么为什么第三种能少那么多内存呢?之前有人说用了共享对象的原因,现在我将key,field,value全部都变成了字符串,仍然还是节约很多内存。

 之前我也怀疑过是hashkey,field的字节数少造成的,但是我们下面通过一个实验看就清楚是为什么了。当我将hash-max-ziplist-entries设置为2并且重启后,所有的hashkey都变为了hashtable编码。

 同时我们看到了内存从18.36M变为了122.30M,变化还是很大的。

 

127.0.0.1:8000> object encoding u:8417
"ziplist"
127.0.0.1:8000> config set hash-max-ziplist-entries 2
OK
127.0.0.1:8000> debug reload
OK
(1.08s)
127.0.0.1:8000> config get hash-max-ziplist-entries
1) "hash-max-ziplist-entries"
2) "2"
127.0.0.1:8000> info memory
# Memory
used_memory:128241008
used_memory_human:122.30M
used_memory_rss:137662464
used_memory_peak:134002968
used_memory_peak_human:127.80M
used_memory_lua:36864
mem_fragmentation_ratio:1.07
mem_allocator:jemalloc-3.6.0
127.0.0.1:8000> object encoding u:8417
"hashtable"
 

 

 

 

 

  内存使用量:

 

  

5. 导入数据代码(不考虑代码优雅性,单纯为了测试,勿喷)
    注意:
为了排除共享对象的问题,这里所有key,field,value都用字符串类型。
 
package com.carlosfu.redis;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Random;

import org.junit.Test;

import redis.clients.jedis.Jedis;

/**
 * 一次string-hash优化
 * 
 * @author carlosfu
 * @Date 2015-11-8
 * @Time 下午7:27:45
 */
public class TestRedisMemoryOptimize {

    private final static int TOTAL_USER_COUNT = 1000000;

    private final static String HOST = "127.0.0.1";

    private final static int PORT = 6379;

    /**
     * 纯字符串
     */
    @Test
    public void testString() {
        int mBatchSize = 2000;
        Jedis jedis = null;
        try {
            jedis = new Jedis(HOST, PORT);
            List<String> kvsList = new ArrayList<String>(mBatchSize);
            for (int i = 1; i <= TOTAL_USER_COUNT; i++) {
                String key = "u:" + i;
                kvsList.add(key);
                String value = "v:" + i;
                kvsList.add(value);
                if (i % mBatchSize == 0) {
                    System.out.println(i);
                    jedis.mset(kvsList.toArray(new String[kvsList.size()]));
                    kvsList = new ArrayList<String>(mBatchSize);
                }
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if (jedis != null) {
                jedis.close();
            }
        }
    }

    /**
     * 纯hash
     */
    @Test
    public void testHash() {
        int mBatchSize = 2000;
        String hashKey = "allUser";
        Jedis jedis = null;
        try {
            jedis = new Jedis(HOST, PORT);
            Map<String, String> kvMap = new HashMap<String, String>();
            for (int i = 1; i <= TOTAL_USER_COUNT; i++) {
                String key = "u:" + i;
                String value = "v:" + i;
                kvMap.put(key, value);
                if (i % mBatchSize == 0) {
                    System.out.println(i);
                    jedis.hmset(hashKey, kvMap);
                    kvMap = new HashMap<String, String>();
                }
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if (jedis != null) {
                jedis.close();
            }
        }
    }

    /**
     * segment hash
     */
    @Test
    public void testSegmentHash() {
        int segment = 100;
        Jedis jedis = null;
        try {
            jedis = new Jedis(HOST, PORT);
            Map<String, String> kvMap = new HashMap<String, String>();
            for (int i = 1; i <= TOTAL_USER_COUNT; i++) {
                String key = "f:" + String.valueOf(i % segment);
                String value = "v:" + i;
                kvMap.put(key, value);
                if (i % segment == 0) {
                    System.out.println(i);
                    int hash = (i - 1) / segment;
                    jedis.hmset("u:" + String.valueOf(hash), kvMap);
                    kvMap = new HashMap<String, String>();
                }
            }
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if (jedis != null) {
                jedis.close();
            }
        }
    }

}
 
三、结果对比
 redis核心对象 数据类型 + 编码方式 + ptr  分段hash也不会造成drift
方案 优点 缺点
string

直观、容易理解

  1. 内存占用较大
  2. key值分散、不变于计算整体
hash

直观、容易理解、整合整体

  1. 内存占用大
  2. 一个key占用过大内存,如果是redis-cluster会出 现data drift

 

segment-hash

内存占用量小,虽然理解不够直观,但是总体上是最优的。

理解不够直观。

 
四、结论:
   在使用Redis时,要选择合理的数据结构解决实际问题,那样既可以提高效率又可以节省内存。所以此次优化方案三为最佳。
 
附图一张:redis其实是一把瑞士军刀:
 
 
 
 
 
 
 

 

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
2月前
|
存储 缓存 监控
|
2月前
|
缓存 算法 Java
Java中的内存管理:理解与优化
【10月更文挑战第6天】 在Java编程中,内存管理是一个至关重要的主题。本文将深入探讨Java内存模型及其垃圾回收机制,并分享一些优化内存使用的策略和最佳实践。通过掌握这些知识,您可以提高Java应用的性能和稳定性。
49 4
|
6天前
|
存储 缓存 监控
如何使用内存监控工具来优化 Node.js 应用的性能
需要注意的是,不同的内存监控工具可能具有不同的功能和特点,在使用时需要根据具体工具的要求和操作指南进行正确使用和分析。
24 3
|
21天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
40 6
|
21天前
|
监控 安全 程序员
如何使用内存池池来优化应用程序性能
如何使用内存池池来优化应用程序性能
|
21天前
|
存储 监控 Java
深入理解计算机内存管理:优化策略与实践
深入理解计算机内存管理:优化策略与实践
|
2月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
80 9
|
2月前
|
NoSQL 关系型数据库 MySQL
MySQL与Redis协同作战:优化百万数据查询的实战经验
【10月更文挑战第13天】 在处理大规模数据集时,传统的关系型数据库如MySQL可能会遇到性能瓶颈。为了提升数据处理的效率,我们可以结合使用MySQL和Redis,利用两者的优势来优化数据查询。本文将分享一次实战经验,探讨如何通过MySQL与Redis的协同工作来优化百万级数据统计。
63 5
|
1月前
|
存储 JavaScript 前端开发
如何优化代码以避免闭包引起的内存泄露
本文介绍了闭包引起内存泄露的原因,并提供了几种优化代码的策略,帮助开发者有效避免内存泄露问题,提升应用性能。
|
2月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。