中国人工智能芯片行业正引来一个高潮

简介:

在经历了互联网和移动互联网的追赶之后,中国正成为一个重要的数据大国,预计到2020年中国将拥有全球数据量的20%-25%。而推动这一波人工智能发展的最重要的因素之一就是数据。

中国的人工智能市场,可以大致分成数据中心/云端训练和推理、边缘(雾)计算推理(和训练)以及设备端的推理等三个大类四个小类。

嵌入式开发服务商朗锐智科(www.lrist.com)认为,数据中心/云端训练和推理的市场机会已被业界广泛接受,并随着人工智能的实际应用而进一步迎来爆发式增长。

由于在云端,尤其是训练部分需要更大的灵活度来迎合不可预期的应用和数据增长,预计英特尔CPU+AI加速卡的计算平台将进一步发展,其中推理部分的计算平台,尤其是在应用场景比较明确的情况下,将CPU和低功耗AI加速芯片的多芯片合封的MCP(Multiple-chip Package)将是未来的一个选择。

在设备端侧推理部分,由于要求较好的功耗控制、尺寸大小以及性价比,预计集成AI加速IP的SoC将最终是一个趋势。

在市场层面,一些大的领导企业如苹果、华为等正研发类似方案应用到他们最新的智能手机产品上。由于市场趋势相对明确但应用模式仍需要时间去创新和推广,该市场段仍处于成长阶段。

对于边缘(雾)计算,随着物联网的发展,尤其是实时性要求高的应用场景,如自动驾驶、智能制造等,该市场正成长为一个正在兴起的新市场机会,但还处于市场的起始阶段。该市场段具有相对复杂的应用场景,其相应的人工智能计算平台也将呈现多样化方案。

在政府和市场资本的双重推动下,中国的人工智能芯片行业正引来一个高潮,中国当前本土芯片公司的产品分布了人工智能的整个市场段。而其中的参与者,主要来源于以下几个方面:

新型创业型公司:该类公司的领军人物一般具有较强的人工智能背景,在商业意识和技术研发方面有较好的平衡,目前,这批参与者的数量正在快速成长。

大型的市场领导者/互联网公司:以TAB(Tencent、Alibaba、Baidu)+华为等为主导。由于拥有自己的数据集、算法和应用场景,他们计划开发更适合的人工智能芯片来优化他们的算法和业务。由于具有雄厚的财力、研发能力和数据/应用场景,预计该类参与者将成为中国甚至全球人工智能芯片市场的重要力量。

老牌的芯片公司:这类公司以华为海思、瑞芯微等为代表。他们具有非常好的SoC设计经验和客户,正研发集成了人工智能加速IP的SoC芯片。

高校/研究院背景的创业型公司:由于高校在过去的数十年一直坚持人工智能的芯片设计的基础研究,积累了相当的技术,当前正和产业资本相结合推动其技术的产业转化,如寒武纪(Cambricon)、清华大学微电子所等。

当前的人工智能正处于产业化的早期阶段,所有的国家都站在了同一条起跑线上。而中国政府从上至下给予了人工智能高度的关注,完成了一系列政策层面的顶层设计。而拥有大量的数据并对数据主权的管理以及应用场景的本土化,也必将进一步助力中国本地芯片公司的崛起。

相关文章
|
9月前
|
传感器 机器学习/深度学习 算法
无人机视角yolo多模态、模型剪枝、国产AI芯片部署
无人机视角yolo多模态、模型剪枝、国产AI芯片部署
无人机视角yolo多模态、模型剪枝、国产AI芯片部署
|
9月前
|
人工智能 芯片 异构计算
英伟达要小心了!爆火的Groq芯片能翻盘吗?AI推理速度「吊打」英伟达?
随着科技的飞速发展,人工智能公司Groq挑战了英伟达的王者地位,其AI芯片不仅展现出卓越的实力,还拥有巨大的潜力。Groq设计了一种独特的推理代币经济学模式,该模式背后牵动着众多因素,却也引发了深度思考:新的技术突破来自何处?中国该如何应对并抓住变革中的机遇?Groq成本如何评估?这些都是值得研究和思考的问题。
|
2月前
|
人工智能 并行计算 程序员
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
137 12
|
2月前
|
人工智能 数据安全/隐私保护 数据中心
“芯片围城”下国产AI要放缓?答案或截然相反
12月2日,美国对华实施新一轮出口限制,将140余家中国企业列入贸易限制清单。对此,中国多个行业协会呼吁国内企业谨慎选择美国芯片。尽管受限企业表示影响有限,但此事件引发了关于AI领域芯片供应的担忧。华为云推出的昇腾AI云服务,提供全栈自主的算力解决方案,包括大规模算力集群、AI框架等,旨在应对AI算力需求,确保算力供给的稳定性和安全性,助力中国AI产业持续发展。
|
3月前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】芯片的编程体系
本文探讨了SIMD与SIMT的区别及联系,分析了SIMT与CUDA编程的关系,深入讨论了GPU在SIMT编程的本质及其与DSA架构的关系。文章还概述了AI芯片的并行分类与并行处理硬件架构,强调了理解AI芯片编程体系的重要性,旨在帮助开发者更高效地利用AI芯片算力,促进生态繁荣。
67 0
|
3月前
|
机器学习/深度学习 存储 人工智能
【AI系统】谷歌 TPU v2 训练芯片
2017年,谷歌推出TPU v2,专为神经网络训练设计,标志着从推理转向训练的重大转变。TPU v2引入多项创新,包括Vector Memory、Vector Unit、MXU及HBM内存,以应对训练中数据并行、计算复杂度高等挑战。其高效互联技术构建了TPU v2超级计算机,显著提升大规模模型训练的效率和性能。
84 0
|
4月前
|
人工智能 安全 芯片
【通义】AI视界|谷歌 Tensor G5 芯片揭秘:1+5+2 八核 CPU,支持光线追踪
本文由【通义】自动生成,涵盖黄仁勋宣布台积电协助修复Blackwell AI芯片设计缺陷、苹果分阶段推出Apple Intelligence、OpenAI保守派老将辞职、英伟达深化与印度合作推出印地语AI模型,以及谷歌Tensor G5芯片支持光线追踪等最新科技资讯。点击链接或扫描二维码,获取更多精彩内容。
|
4月前
|
人工智能 机器人 云计算
【通义】AI视界|OpenAI据称已计划联手博通和台积电共同打造自研芯片
本文由【通义】自动生成,涵盖苹果iOS 18.2将集成ChatGPT、OpenAI联手博通和台积电自研芯片、微软指责谷歌发起影子运动、英伟达高管预测AI将呈现人类形态、OpenAI董事会主席的初创公司估值达45亿美元等热点资讯。更多精彩内容,请访问通通知道。
|
4月前
|
数据采集 人工智能 搜索推荐
【通义】AI视界|迎接Apple Intelligence,Mac家族进入M4芯片时代
本文概览了近期科技领域的五大热点:苹果宣布Apple Intelligence将于2025年4月支持中文;新款Mac将搭载M4芯片;ChatGPT周活跃用户达2.5亿,主要收入来自订阅;Meta开发AI搜索引擎减少对外部依赖;周鸿祎支持AI发展但反对构建超级智能。更多详情,访问通义平台。
|
5月前
|
机器学习/深度学习 人工智能 自动驾驶
【通义】AI视界|马斯克:特斯拉计划2025年末批量装备AI训练芯片Dojo2
本文精选了24小时内的重要AI新闻,包括特斯拉计划2025年批量装备Dojo 2芯片、英伟达股价大涨、谷歌联合创始人积极参与AI项目、中科院女工程师开源AI模型保护女性,以及快手旗下可灵AI与蓝色光标达成战略合作。更多内容敬请访问通义官网体验。