从零开始_学_数据结构(六)——排序(冒泡、插入、希尔、简单选择、归并、快速)

简介: 一、冒泡排序: (1)思想是: 从第1个开始,1和2比,2和3比,3和4比,如果前面比后面大,则互相交换之,一直到n-1和n进行比。这是第一轮。 然后第二轮再从第1个开始,2和3比,3和4比,再一直比到n-1和n,比的时候符合条件(前大后小)则交换。 然后一直到从n-1个开始,最后比较一次n-1和n。 因此,时间复杂度是O(n2);   代码: #include<i

一、冒泡排序:

1)思想是:
从第1个开始,12比,23比,34比,如果前面比后面大,则互相交换之,一直到n-1n进行比。这是第一轮。

然后第二轮再从第1个开始,23比,34比,再一直比到n-1n,比的时候符合条件(前大后小)则交换。

然后一直到从n-1个开始,最后比较一次n-1n

因此,时间复杂度是O(n2)

 

代码:

#include<iostream>

void maopao()
{
	using namespace std;
	int n = 100;
	int m[100];
	for (int i = 0; i < n; i++)//赋值,从m[0]到m[99],值是100->1
		m[i] = 100 - i;
	for (int i = 0; i < n; i++)	//显示当前排序
		cout << m[i] << " ";
	cout << "————分割线————" << endl;
	for (int i = 0; i<n; i++)	//排序
		for (int j = 0; j<n - 1; j++)
		{
			if (m[j]>m[j + 1])
			{
				int temp;
				temp = m[j];
				m[j] = m[j + 1];
				m[j + 1] = temp;
			}
		}
	for (int i = 0; i < n; i++)//显示当前排序
		cout << m[i] << " ";
}





二、插入排序:

1)其思想是:

①首先,给最左边留一个空(用于临时存储要被移动的数字),例如a[0]

 

②然后从右往左开始比;例如从a[1]开始

 

③假如当前值a[3]比其左边的大,进入判断,否则继续下一个数字;

 

④假如当前数值比左边的小,于是,把当前值给最左边预留的空位(a[0]);

 

⑤然后进入循环,问,现在这个位置(第j位)值,是不是是比左边的小,如果小,将左边的值赋给他(而他的值目前在a0】处),然后当前位置(j)往左移动一位(j--)并且再一次判断,移动后的这个位置,其值是不是比左边的值小,如果小,执行相同的指令;

 

⑥假如当前位置的值比左边的大了,于是终止循环,由于记录了终止循环时的位置(此时的位置的值,要么是完全没有交换,要么是把当前位置的值赋给了他右边的位置),因此,把之前存储在a0】位置的值,赋给他(无论是哪种情况都不影响)。

 

⑦因此,只要被排序过的,一定是小的在左边,大的在右边(大的都被移动到右边去了),等排序完了,整体数组一定是小的在左边,大的在右边了。

 

代码:

void charu()	//插入排序
{
	using namespace std;
	int n = 100;
	int m[100];
	for (int i = 0; i < n; i++)//赋值,从m[0]到m[99],值是100->1
		m[i] = 100 - i;
	for (int i = 0; i < n; i++)	//显示当前排序
		cout << m[i] << " ";
	cout << "————分割线————" << endl;
	for (int i = 1; i < n; i++)
	{
		int temp = m[i];	//临时存放这个m[i](插入的数字)
		int j = i;	//记录j=i
		if (j>0 && m[j] < m[j - 1])	//首先j要>0(防止出界),然后插入这个位置比左边位置的小
			while (temp < m[j - 1] && j>0)	//开始循环,将左边放到右边,直到左边的比右边小
				m[j--] = m[j - 1];	//每次交换后,都要往左移动一位(即第一次是交换n-1和n,第二次就是n-2和n-1)
		m[j] = temp;	//此时j的位置被赋值(即插入的位置,右边都比他大,左边也比他小)
	}

	for (int i = 0; i < n; i++)	//显示当前排序
		cout << m[i] << " ";
}


 

 

 

 

三、希尔排序:

相当于连续多次的插入排序(但比插入排序优化)

时间复杂度是f(n)=n log n;(比n2要小)

 

代码:

	//希尔排序
	for (gap = length / 2; gap > 0; gap /= 2)	//每次步长减半
	{
		for (i = 0; i < gap; i++)	//步长有多少,就移动多少次
		{
			for (j = i + gap; j < length; j += gap)	//以步长为间距进行交换,注意,初始位置是i位置加步长的位置(即第二步)
			{
				if (m[j] < m[j - gap])	//当前位置和其步长位置之前的进行比较(以步长为间距)。第一次是第二步和第一步进行比较
				{
					int temp = m[j];
					int k = j - gap;	//两个数字的位置差,k是第一步的位置
					while (k >= 0 && m[k]>temp)	//k>0说明在右边,要交换的位置在右边。第二个指第一步比临时存储第二步大(所以需要交换,否则第一步比第二步小则不用交换)
					{
						m[k + gap] = m[k];	//当前位置和右边的交换
						k -= gap;	//然后往左移动一个步长(同组的左边那个)
					}
					m[k + gap] = temp;	//将存储在临时的,赋值给移动后最左边的位置
				}
			}
		}
	}



 

四、简单选择排序

1)思想:

从第1个开始,然后先看第2个是否比第一个小,是则交换然后继续,不是则继续。然后再看第3个是否比第一个小,判断是否交换,再看第4个,以此类推。一直到第n个。——因此,可能比较了n-1次,但是0次交换(说明排序前,该位置是没问题的),也可能是若干次交换,但无论如何,当比较n-1次后,该位置的数字就是它应该的数字。

然后从第2个开始,依次比较345...一直到第n个。

总比较次数是(n-1+1*(n-1)/2

 

2)时间复杂度:
f(n)=O(n2);

 

3)代码:

	int n = 100;
	int m[100];
	for (int i = 0; i < n; i++)//赋值,从m[0]到m[99],值是100->1
		m[i] = 100 - i;
	for (int i = 0; i < n; i++)	//显示当前排序
		cout << m[i] << " ";
	cout << "————分割线————" << endl;
	for (int i = 0; i < n-1; i++)	//第i轮,总计n-1轮
		for (int j = i; j < n; j++)	//第i轮中的循环
		{
			if (m[j] < m[i])	//后面比前面小则交换
			{
				int temp;
				temp = m[j];
				m[j] = m[i];
				m[i] = temp;
			}
		}
	for (int i = 0; i < n; i++)	//显示当前排序
		cout << m[i] << " ";


 

五、归并排序

1)思路:

首先,将数组对半分拆,放入1个新数组之中(分为前后两部分);

使用递归,分别对分拆后的数组(前后某个部分)继续分拆,放入一个更新的数组之中(分为前后两部分),此时,这个更新的数组,长度和旧的是一样的(但由于递归,每次占用的相对于总长度而说越来越少);

一直到对半分后为1个的情况下,将其放入相对较旧的那个数组对应的位置之中。

然后递归返回,开始排序。

此时,是有一较旧数组和一较新数组,有较新数组使用的初始下标、中间下标和结束下标(以中间为分割,分为前后两部分)。

然后对较新数组的前后两部分进行排序,放入较旧的数组之中。

继续递归返回,此时较旧数组作为较新数组,和另外一个较新数组一起属于一个较新数组的前后两部分,然后通过排序,放入较旧数组之中。

一直递归到初始数组为止。

然后新数组就是排序好的。

 

2)代码:

	int n = 100;
	int m[100];
	for (int i = 0; i < n; i++)//赋值,从m[0]到m[99],值是100->1
		m[i] = 100 - i;
	for (int i = 0; i < n; i++)	//显示当前排序
		cout << m[i] << " ";
	cout << "————分割线————" << endl;
	int*p = new int[n];
	guibing(m, p, 0, n-1);
	for (int i = 0; i < n; i++)	//显示当前排序,这里要输出新数组p的
		cout << p[i] << " ";
	delete[]p;	//删除(如果需要保留则不删除)

void guibing(int *old, int *ne, int first, int last)	//旧数组old(没排序的),新数组ne(排序好的),first(数组第一个元素),数组的最后一个元素的下标
{
	int middle;
	int *ne2 = new int[last + 1];	//ne2的长度是数组总长
	if (first == last)	//如果相等,说明数组第一个元素就是最后一元素
		ne[first] = old[first];	//将没排序的放到排序好的那个数组对应的位置
	else
	{
		middle = (first + last) / 2;	//寻找中间的坐标
		guibing(old, ne2, first, middle);	//把
		guibing(old, ne2, middle + 1, last);
		caozuo(ne2, ne, first, middle, last);

	}
	delete[]ne2;
}
void caozuo(int*ne2, int*ne, int i, int m, int n)
{
	int j, k, l;
	for (j = m + 1, k = i; i <= m&&j <= n; k++)	//j是后半部分数组的起始下标,k是前半部分数组的起始下标,当前半部分下标i比m大,或者后半部分下标比n大则结束循环
	{
		if (ne2[i] < ne2[j])	//如果较新数组的后半部分位置j比前半部分对应数组位置k大
			ne[k] = ne2[i++];	//把小的那个放入较旧的数组的k位置(之后k+1),并且小的那个移动到下一个位置
		else
			ne[k] = ne2[j++];	//同上
	}
	//此时,前后部分必然有一部分复制完,另外一部分剩1个或者更多
	if (i <= m)	//如果前面的没有复制完,则复制完
	{
		for (l = 0; l <= m - i; l++)
			ne[k + l] = ne2[i + l];
	}
	if (j <= n)
	{
		for (l = 0; l <= n - j; l++)
			ne[k + l] = ne2[j + l];
	}
}


 

 

六、快速排序

1)思想:

①先用第一个元素,作为比对值key

②然后从后面开始找,如果有比key小的,交换之(key到后面);

③然后再从前面找,有比key大的,和key交换,(key又到前面);然后再从后面找,②③循环,直到前后相遇

④于是前后相遇的地方为中间值,返回其下标。

此时,这个下标前面的必然比他小,后面的必然比他大。原因是数组中每个数他都比较过了,并且把比他小的通过交换放他前面了,比他大的放他后面了。

⑤以下标为中心,分为前后两部分(不包括下标所在数字),因为下标所在数字是其正确的位置。

⑥前后两部分分别进行②③循环,形成递归(并且递归的时候,每次至少将一个数字移动到其正确的位置)。直到每部分剩了一个数字为止(剩2个数字的时候依然在交换,并且交换后两部分各一个数字然后停止)。

 

代码:

	int n = 100;
	int m[100];
	for (int i = 0; i < n; i++)//赋值,从m[0]到m[99],值是100->1
		m[i] = 100 - i;
	for (int i = 0; i < n; i++)	//显示当前排序
		cout << m[i] << " ";
	cout << "————分割线————" << endl;
	QuickSort(m, 0, 99);
	for (int i = 0; i < n; i++)	//显示当前排序
		cout << m[i] << " ";

void swap(int&a, int&b)	//交换2个值
{
	int temp = a;
	a = b;
	b = temp;
}

void QuickSort(int*m, int f, int l)	//参数为数组、第一个下标和最后一个下标
{
	int mid;
	if (f < l)	//如果第一个比最后一个小
	{
		mid = getMid(m, f, l);	//得到中间值,并将中间值放到最中间位置
		QuickSort(m, f, mid - 1);	//从开始到中间前一个
		QuickSort(m, mid + 1, l);	//从中间后一个到最后
	}
}

int getMid(int*m, int f, int l)	//参数为,数组,第一个下标,最后一个下标
{
	int key = m[f];	//key是第一个数字的下标
	while (f < l)
	{
		while (f < l&&m[l] >= key)	//第一个下标比最后一个下标小,并且最后一个下标的值大于等于key(第一个下标的值)
			l--;	//最后一个往里面靠一位,直到找到一个后面比前面小标小的
		swap(m[f], m[l]);	//因为后面比前面那个小,所以交换之
		while (f < l&&m[f] <= key)	//最前面那个下标比key小,则最前面的下标往后移动一位
			f++;
		swap(m[f], m[l]);	//这是前面的m[f]比后面的大了,所以交换
	}
	return f;	//返回该数字的下标(由于前后重合了,所以f=l
}


目录
相关文章
|
1月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
24 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
1月前
|
存储 搜索推荐 算法
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
23 1
|
1月前
|
算法
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
|
19天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
98 9
|
10天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
19 1
|
13天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
16天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
18天前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
46 4
|
1月前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
31 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
22天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!

热门文章

最新文章

下一篇
无影云桌面