HBase MetaStore和Compaction剖析

简介: 1.概述   客户端读写数据是先从HBase Master获取RegionServer的元数据信息,比如Region地址信息。在执行数据写操作时,HBase会先写MetaStore,为什么会写到MetaStore。

 

1.概述

  客户端读写数据是先从HBase Master获取RegionServer的元数据信息,比如Region地址信息。在执行数据写操作时,HBase会先写MetaStore,为什么会写到MetaStore。本篇博客将为读者剖析HBase MetaStore和Compaction的详细内容。

2.内容

  HBase的内部通信和数据交互是通过RPC来实现,关于HBase的RPC实现机制下篇博客为大家分享。客户端应用程序通过RPC调用HBase服务端的写入、删除、读取等请求,由HBase的Master分配对应的RegionServer进行处理,获取每个RegionServer中的Region地址,写入到HFile文件中,最终进行数据持久化。

  在了解HBase MetaStore之前,我们可以先来看看RegionServer的体系结构,其结构图如下所示: 

  在HBase存储中,虽然Region是分布式存储的最小单元,单并不是存储的最小单元。从图中可知,事实上Region是由一个或者多个Store构成的,每个Store保存一个列族(Columns Family)。而每个Store又由一个MemStore和0到多个StoreFile构成,而StoreFile以HFile的格式最终保存在HDFS上。

2.1 写入流程

  HBase为了保证数据的随机读取性能,在HFile中存储RowKey时,按照顺序存储,即有序性。在客户端的请求到达RegionServer后,HBase为了保证RowKey的有序性,不会将数据立即写入到HFile中,而是将每个执行动作的数据保存在内存中,即MetaStore中。MetaStore能够很方便的兼容操作的随机写入,并且保证所有存储在内存中的数据是有序的。当MetaStore到达阀值时,HBase会触发Flush机制,将MetaStore中的数据Flush到HFile中,这样便能充分利用HDFS写入大文件的性能优势,提供数据的写入性能。

  整个读写流程,如下所示:

  由于MetaStore是存储放在内存中的,如果RegionServer由于出现故障或者进程宕掉,会导致内存中的数据丢失。HBase为了保证数据的完整性,这存储设计中添加了一个WAL机制。每当HBase有更新操作写数据到MetaStore之前,会写入到WAL中(Write AHead Log的简称)。WAL文件会通过追加和顺序写入,WAL的每个RegionServer只有一个,同一个RegionServer上的所有Region写入到同一个WAL文件中。这样即使某一个RegionServer宕掉,也可以通过WAL文件,将所有数据按照顺序重新加载到内容中。

 2.2 读取流程

   HBase查询通过RowKey来获取数据,客户端应用程序根据对应的RowKey来获取其对应的Region地址。查找Region的地址信息是通过HBase的元数据表来获取的,即hbase:meta表所在的Region。通过读取hbase:meta表可以找到每个Region的StartKey、EndKey以及所属的RegionServer。由于HBase的RowKey是有序分布在Region上,所以通过每个Region的StartKey和EndKey来确定当前操作的RowKey的Region地址。

  由于扫描hbase:meta表会比较耗时,所以客户端会存储表的Region地址信息。当请求的Region租约过期时,会重新加载表的Region地址信息。

2.3 Flush机制

  RegionServer将数据写入到HFile中不是同步发生的,是需要在MetaStore的内存到达阀值时才会触发。RegionServer中所有的Region的MetaStore的内存占用量达到总内存的设置占用量之后,才会将MetaStore中的所有数据写入到HFile中。同时会记录以及写入的数据的顺序ID,便于WAL的日志清理机制定时删除WAL的无用日志。

  MetaStore大小到达阀值后会Flush到磁盘中,关键参数由hbase.hregion.memstore.flush.size属性配置,默认是128MB。在Flush的时候,不会立即去Flush到磁盘,会有一个检测的过程。通过MemStoreFlusher类来实现,具体实现代码如下所示:

private boolean flushRegion(final FlushRegionEntry fqe) {
    HRegion region = fqe.region;
    if (!region.getRegionInfo().isMetaRegion() &&
        isTooManyStoreFiles(region)) {
      if (fqe.isMaximumWait(this.blockingWaitTime)) {
        LOG.info("Waited " + (EnvironmentEdgeManager.currentTime() - fqe.createTime) +
          "ms on a compaction to clean up 'too many store files'; waited " +
          "long enough... proceeding with flush of " +
          region.getRegionNameAsString());
      } else {
        // If this is first time we've been put off, then emit a log message.
        if (fqe.getRequeueCount() <= 0) {
          // Note: We don't impose blockingStoreFiles constraint on meta regions
          LOG.warn("Region " + region.getRegionNameAsString() + " has too many " +
            "store files; delaying flush up to " + this.blockingWaitTime + "ms");
          if (!this.server.compactSplitThread.requestSplit(region)) {
            try {
              this.server.compactSplitThread.requestSystemCompaction(
                  region, Thread.currentThread().getName());
            } catch (IOException e) {
              LOG.error(
                "Cache flush failed for region " + Bytes.toStringBinary(region.getRegionName()),
                RemoteExceptionHandler.checkIOException(e));
            }
          }
        }

        // Put back on the queue.  Have it come back out of the queue
        // after a delay of this.blockingWaitTime / 100 ms.
        this.flushQueue.add(fqe.requeue(this.blockingWaitTime / 100));
        // Tell a lie, it's not flushed but it's ok
        return true;
      }
    }
    return flushRegion(region, false, fqe.isForceFlushAllStores());
  }

  从实现方法来看,如果是MetaRegion,会立刻进行Flush,原因在于Meta Region优先级高。另外,判断是不是有太多的StoreFile,这个StoreFile是每次MemStore Flush产生的,每Flush一次就会产生一个StoreFile,所以Store中会有多个StoreFile,即HFile。

  另外,在HRegion中也会检查Flush,即通过checkResources()方法实现。具体实现代码如下所示:

private void checkResources() throws RegionTooBusyException {
    // If catalog region, do not impose resource constraints or block updates.
    if (this.getRegionInfo().isMetaRegion()) return;

    if (this.memstoreSize.get() > this.blockingMemStoreSize) {
      blockedRequestsCount.increment();
      requestFlush();
      throw new RegionTooBusyException("Above memstore limit, " +
          "regionName=" + (this.getRegionInfo() == null ? "unknown" :
          this.getRegionInfo().getRegionNameAsString()) +
          ", server=" + (this.getRegionServerServices() == null ? "unknown" :
          this.getRegionServerServices().getServerName()) +
          ", memstoreSize=" + memstoreSize.get() +
          ", blockingMemStoreSize=" + blockingMemStoreSize);
    }
  }

  代码中的memstoreSize表示一个Region中所有MemStore的总大小,而其总大小的结算公式为:

  BlockingMemStoreSize = hbase.hregion.memstore.flush.size * hbase.hregion.memstore.block.multiplier

  其中,hbase.hregion.memstore.flush.size默认是128MB,hbase.hregion.memstore.block.multiplier默认是4,也就是说,当整个Region中所有的MemStore的总大小超过128MB * 4 = 512MB时,就会开始出发Flush机制。这样便避免了内存中数据过多。

3. Compaction

  随着HFile文件数量的不断增加,一次HBase查询就可能会需要越来越多的IO操作,其 时延必然会越来越大。因而,HBase设计了Compaction机制,通过执行Compaction来使文件数量基本保持稳定,进而保持读取的IO次数稳定,那么延迟时间就不会随着数据量的增加而增加,而会保持在一个稳定的范围中。

  然后,Compaction操作期间会影响HBase集群的性能,比如占用网络IO,磁盘IO等。因此,Compaction的操作就是短时间内,通过消耗网络IO和磁盘IO等机器资源来换取后续的HBase读写性能。

  因此,我们可以在HBase集群空闲时段做Compaction操作。HBase集群资源空闲时段也是我们清楚,但是Compaction的触发时段也不能保证了。因此,我们不能在HBase集群配置自动模式的Compaction,需要改为手动定时空闲时段执行Compaction。

  Compaction触发的机制有以下几种:

  1. 自动触发,配置hbase.hregion.majorcompaction参数,单位为毫秒
  2. 手动定时触发:将hbase.hregion.majorcompaction参数设置为0,然后定时脚本执行:echo "major_compact tbl_name" | hbase shell
  3. 当选中的文件数量大于等于Store中的文件数量时,就会触发Compaction操作。由属性hbase.hstore.compaction.ratio决定。

  至于Region分裂,通过hbase.hregion.max.filesize属性来设置,默认是10GB,一般在HBase生产环境中设置为30GB。

4.总结

  在做Compaction操作时,如果数据业务量较大,可以将定时Compaction的频率设置较短,比如:每天凌晨空闲时段对HBase的所有表做一次Compaction,防止在白天繁忙时段,由于数据量写入过大,触发Compaction操作,占用HBase集群网络IO、磁盘IO等机器资源。

5.结束语

  这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉。 

联系方式:
邮箱:smartloli.org@gmail.com
Twitter: https://twitter.com/smartloli
QQ群(Hadoop - 交流社区1): 424769183
温馨提示:请大家加群的时候写上加群理由(姓名+公司/学校),方便管理员审核,谢谢!

热爱生活,享受编程,与君共勉!


作者:哥不是小萝莉 [关于我][犒赏

出处:http://www.cnblogs.com/smartloli/

转载请注明出处,谢谢合作!

相关实践学习
lindorm多模间数据无缝流转
展现了Lindorm多模融合能力——用kafka API写入,无缝流转在各引擎内进行数据存储和计算的实验。
云数据库HBase版使用教程
&nbsp; 相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情:&nbsp;https://cn.aliyun.com/product/hbase &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
分布式数据库 Hbase 算法
HBase Compaction策略
HBase Compaction策略 StripeCompactionPolicy、DateTieredCompactionPolicy、RatioBasedCompactionPolicy、ExploringCompactionPolicy、FIFOCompactionPolicy
4001 0
|
存储 测试技术 分布式数据库
技术篇-HBase 2.0 新特性之 In-Memory Compaction
In-Memory Compaction 是 HBase2.0 中的重要特性之一,通过在内存中引入 LSM 结构,减少多余数据,实现降低 flush 频率和减小写放大的效果。本文根据 HBase2.0 中相关代码以及社区的讨论、博客,介绍 In-Memory Compaction 的使用和实现原理。
5002 0
|
存储 分布式数据库 索引
HBase2.0新特性之In-Memory Compaction
In-Memory Compaction是HBase2.0中的重要特性之一,通过在内存中引入LSM结构,减少多余数据,实现降低flush频率和减小写放大的效果。本文根据HBase2.0中相关代码以及社区的讨论、博客,介绍In-Memory Compaction的使用和实现原理。
4996 0
|
7月前
|
Java Shell 分布式数据库
【大数据技术Hadoop+Spark】HBase数据模型、Shell操作、Java API示例程序讲解(附源码 超详细)
【大数据技术Hadoop+Spark】HBase数据模型、Shell操作、Java API示例程序讲解(附源码 超详细)
163 0
|
3月前
|
分布式计算 Java Hadoop
java使用hbase、hadoop报错举例
java使用hbase、hadoop报错举例
121 4
|
2月前
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
80 4
|
2月前
|
SQL 分布式计算 Hadoop
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
Hadoop-37 HBase集群 JavaAPI 操作3台云服务器 POM 实现增删改查调用操作 列族信息 扫描全表
39 3
|
2月前
|
分布式计算 Hadoop Shell
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
60 3
|
2月前
|
SQL 分布式计算 Hadoop
Hadoop-34 HBase 安装部署 单节点配置 hbase-env hbase-site 超详细图文 附带配置文件
Hadoop-34 HBase 安装部署 单节点配置 hbase-env hbase-site 超详细图文 附带配置文件
101 2