【CVPR 2018】用狗的数据训练AI,华盛顿大学研发模拟狗行为的AI系统

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: 一般的机器学习系统都是以人的视角建立,但华盛顿大学和艾伦人工智能研究所的研究人员试图用狗的行为数据训练AI系统。研究人员通过传感器等设备采集了一只爱斯基摩犬的运动数据,并以此来训练AI系统实现三个目标:1、像狗一样行动,预测未来动作;2、像狗一样计划任务;3、从狗行为中学习。

我们已经训练机器学习系统来识别物体,进行导航,或识别面部表情,但尽管可能很难,机器学习甚至没有达到可以模拟的复杂程度,例如,模拟一只狗。那么,这个项目的目的就是做到这一点——当然是用一种非常有限的方式。通过观察一只非常乖巧的狗的行为,这个AI学会了如何像狗一样行动的基础知识。

这是华盛顿大学和艾伦人工智能研究所合作的研究,论文发表在今年6月举办的CVPR。

b86bfd564cff3dd332c2ba0f259a3dc7f3ca0897

摘要

我们研究了如何直接建模一个视觉智能体(visually intelligent agent)。计算机视觉通常专注于解决与视觉智能相关的各种子任务。但我们偏离了这种标准的计算机视觉方法;相反,我们试图直接建模一个视觉智能的agent。我们的模型将视觉信息作为输入,并直接预测agent的行为。为此,我们引入了DECADE数据集,这是一个从狗的视角搜集的狗的行为数据集。利用这些数据,我们可以模拟狗的行为和动作规划方式。在多种度量方法下,对于给定的视觉输入,我们成功地对agent进行了建模。此外,与图像分类任务训练的表示相比,我们的模型学习到的表示能编码不同的信息,也可以推广到其他领域。特别是,通过将这种狗的建模任务作为表示学习,我们在可行走表面预测(walkable surface estimation)和场景分类任务中得到了非常好的结果。

理解视觉数据:模仿狗,学习狗

为什么做这个研究?虽然已经有很多工作在研究模拟感知的子任务,例如识别一个物体并将其捡拾起来,但是“理解视觉数据,达到可以让agent在视觉世界中采取行动并执行任务的程度”,这样的研究很少。换句话说,不是模拟眼睛的行为,而是模拟控制眼睛的主体。

那么为什么选择狗?因为狗是非常复杂的智能体,研究者说:“它们的目标和动机往往是没法预知的。”换句话说,狗狗很聪明,但我们不知道它们在想什么。

作为对这一研究领域的初步尝试,该团队希望通过密切监视狗狗的行为,并将狗狗的运动和行动与所它看到的环境相对应,来观察是否能够建立一个能够准确预测这些行动的系统。

89efae008e71852537fe13b03c0e7fccec10a346

将一套传感器装在一直爱斯基摩犬身上,收集数据

为了达到这一目的,研究者把一套基础传感器装在一只名叫Kelp M. Redmon的爱斯基摩犬身上。他们在Kelp的头部装上一个GoPro相机6个惯性测量单元(分别在腿、尾巴和身体上)用以判断物体的位置,一个麦克风以及一个把这些数据绑在一起的Arduino开发板

他们花了许多小时记录狗狗的活动——在不同的环境中行走,取东西,在狗公园玩耍,吃东西——并把狗的动作与它看到的环境同步。结果是形成了一个在狗的环境中以狗自身为视角的行为数据集(Dataset of Ego-Centric Actions in a Dog Environment),简称为DECADE数据集。研究者用这个数据集来训练一个新的AI智能体。

对这个agent,给定某种感官输入——例如一个房间或街道的景象,或一个飞过的球——以预测狗在这种情况下会做什么。当然,不用说特别细节,哪怕只是弄清楚它的身体如何移动,移向哪里,已经是一项相当重要的任务。

华盛顿大学的Hessam Bagherinezhad是研究人员之一,他解释道:“它学会了如何移动关节以走路,学会了再走路或跑步是如何避开障碍物。”“它学会了追着松鼠跑,跟随者主人走,追逐飞起来的狗玩具(玩飞盘游戏时)。这些都是计算机视觉和机器人技术的一些基本AI任务(例如运动规划、可步行的表面、物体检测、物体跟踪、人物识别),我们一直试图通过为每个任务收集单独的数据来解决。

87949d526e0c326fe99603bab2837e0f7be3f916

研究提出三个问题:(1) 模仿狗的行为:根据狗之前的行为图像,预测狗接下来的行为;(2) 像狗一样规划行动;(3)从狗的行为学习:例如,预测一个可供行走的区域。

这些任务可以产生一些相当复杂的数据:例如,狗模型必须知道,就像真的狗狗一样,当它需要从一个地点移动到另一地点的时候,它可以在哪些地方行走。它不能在树上或汽车上行走,也不能在沙发上行走(取决于房子)。因此,这个模型也学会了这一点,它可以作为一个计算机视觉模型单独部署,用以找出一个宠物(或一个有足机器人)在一张给定图像中可以到达的位置。

c90e13dd779ca027e14d1e3ed44fc167a18a1577


研究人员说,这只是一个初步的实验,虽然取得了成功,但结果有限。后续研究可能会考虑引入更多的感官(例如嗅觉),或者看看一只狗(或许多狗)的模型可以如何推广到其他狗身上。他们的结论是:“我们希望这项工作为我们更好地理解视觉智能和其他生活在我们世界里的智能生物铺平道路。”


原文发布时间为:2018-04-13

本文作者:肖琴

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”。

原文链接:【CVPR 2018】用狗的数据训练AI,华盛顿大学研发模拟狗行为的AI系统

相关文章
|
3天前
|
人工智能 前端开发 小程序
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
|
7天前
|
存储 人工智能 人机交互
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
PC Agent 是上海交通大学与 GAIR 实验室联合推出的智能 AI 系统,能够模拟人类认知过程,自动化执行复杂的数字任务,如组织研究材料、起草报告等,展现了卓越的数据效率和实际应用潜力。
71 1
PC Agent:开源 AI 电脑智能体,自动收集人机交互数据,模拟认知过程实现办公自动化
|
7天前
|
人工智能 自然语言处理 并行计算
ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
ASAL 是由 Sakana AI 联合 OpenAI 等机构推出的自动化搜索人工生命系统,基于基础模型实现多种搜索机制,扩展了人工生命研究的边界。
58 1
ASAL:Sakana AI 联合 OpenAI 推出自动探索人工生命的系统,通过计算机模拟生命进化的过程
|
21天前
|
存储 人工智能 vr&ar
转载:【AI系统】CPU 基础
CPU,即中央处理器,是计算机的核心部件,负责执行指令和控制所有组件。本文从CPU的发展史入手,介绍了从ENIAC到现代CPU的演变,重点讲述了冯·诺依曼架构的形成及其对CPU设计的影响。文章还详细解析了CPU的基本构成,包括算术逻辑单元(ALU)、存储单元(MU)和控制单元(CU),以及它们如何协同工作完成指令的取指、解码、执行和写回过程。此外,文章探讨了CPU的局限性及并行处理架构的引入。
转载:【AI系统】CPU 基础
|
17天前
|
人工智能 安全 算法
CAMEL AI 上海黑客松重磅来袭!快来尝试搭建你的第一个多智能体系统吧!
掌握多智能体系统,🐫 CAMEL-AI Workshop & 黑客马拉松即将启航!
CAMEL AI 上海黑客松重磅来袭!快来尝试搭建你的第一个多智能体系统吧!
|
21天前
|
人工智能 缓存 并行计算
转载:【AI系统】CPU 计算本质
本文深入探讨了CPU计算性能,分析了算力敏感度及技术趋势对CPU性能的影响。文章通过具体数据和实例,讲解了CPU算力的计算方法、算力与数据加载之间的平衡,以及如何通过算力敏感度分析优化计算系统性能。同时,文章还考察了服务器、GPU和超级计算机等平台的性能发展,揭示了这些变化如何塑造我们对CPU性能的理解和期待。
转载:【AI系统】CPU 计算本质
|
21天前
|
机器学习/深度学习 存储 人工智能
转载:【AI系统】计算之比特位宽
本文详细介绍了深度学习中模型量化操作及其重要性,重点探讨了比特位宽的概念,包括整数和浮点数的表示方法。文章还分析了不同数据类型(如FP32、FP16、BF16、FP8等)在AI模型中的应用,特别是FP8数据类型在提升计算性能和降低内存占用方面的优势。最后,文章讨论了降低比特位宽对AI芯片性能的影响,强调了在不同应用场景中选择合适数据类型的重要性。
转载:【AI系统】计算之比特位宽
|
21天前
|
机器学习/深度学习 人工智能 算法
转载:【AI系统】关键设计指标
本文介绍了AI芯片的关键设计指标及其与AI计算模式的关系,涵盖计算单位(如OPS、MACs、FLOPs)、关键性能指标(精度、吞吐量、时延、能耗、成本、易用性)及优化策略,通过算术强度和Roofline模型评估AI模型在芯片上的执行性能,旨在帮助理解AI芯片设计的核心考量与性能优化方法。
转载:【AI系统】关键设计指标
|
21天前
|
机器学习/深度学习 人工智能 并行计算
转载:【AI系统】AI轻量化与并行策略
本文探讨了AI计算模式对AI芯片设计的重要性,重点分析了轻量化网络模型和大模型分布式并行两大主题。轻量化网络模型通过减少模型参数量和计算量,实现在资源受限设备上的高效部署;大模型分布式并行则通过数据并行和模型并行技术,解决大模型训练中的算力和内存瓶颈,推动AI技术的进一步发展。
转载:【AI系统】AI轻量化与并行策略
|
11天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在电子商务中的个性化推荐系统:驱动用户体验升级
AI在电子商务中的个性化推荐系统:驱动用户体验升级
71 17