PostgreSQL数据库 OLTP高并发请求性能优化

本文涉及的产品
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
简介: 在多核系统中,一般TPS会随并发数的增加而提升,但是当并发数超过一定的数值(如CPU核数的2到3倍以后),性能开始下降,并发数越高,下降越严重。
在多核系统中,一般TPS会随并发数的增加而提升,但是当并发数超过一定的数值(如CPU核数的2到3倍以后),性能开始下降,并发数越高,下降越严重。
例子:
更新500万记录表中的1条随机记录。开8000个并发。
 
  

create table test_8000 (id int primary key, cnt int default 0);
insert into test_8000 select generate_series(1,5000000);
vi t.sql
\setrandom id 1 5000000
update test_8000 set cnt=cnt+1 where id=:id;
update test_8000 set cnt=cnt+2 where id=:id;

每次加载80个并发,循环100次,一共加载8000个并发。
 
  

vi test.sh
#!/bin/bash
for ((i=0;i<100;i++))
do
sleep 1;
pgbench -M simple -n -r -f ./t.sql -c 80 -j 80 -T 100000 -U postgres &
done

开始
 
 

. ./test.sh

当连接数达到8000后,观察TPS,我们可以使用PG的统计信息表来计算QPS。
 
  

postgres=# select count(*) from pg_stat_activity;
 count 
-------
  8002
(1 row)
postgres=# select timestamptz '2015-10-08 17:01:24.203089+08' - timestamptz '2015-10-08 17:01:16.574076+08';
    ?column?     
-----------------
 00:00:07.629013
(1 row)
postgres=# select 43819090-43749480;
 ?column? 
----------
    69610
(1 row)
postgres=# select 69610/07.629013;
       ?column?        
-----------------------
 9124.3782124896103860
(1 row)

8000个并发的时候,更新TPS约9124。大部分时间可能浪费在CPU调度上了。

另一种场景,
如果有8000个并发是空闲连接,只有10个在执行更新,性能是这样的:
先制造8000个空闲连接:
 
  

vi test.sql
select pg_sleep(100000);
vi test.sh
#!/bin/bash
for ((i=0;i<100;i++))
do
sleep 1;
pgbench -M simple -n -r -f ./test.sql -c 80 -j 80 -T 100000 -U postgres &
done
. ./test.sh
postgres=# select count(*) from pg_stat_activity;
 count 
-------
  8002
(1 row)

然后开启10个连接执行更新操作。
 
  

pgbench -M prepared -n -r -f ./t.sql -P 1 -c 10 -j 10 -T 1000 -U postgres postgres
progress: 1.0 s, 29429.2 tps, lat 0.336 ms stddev 0.109
progress: 2.0 s, 28961.1 tps, lat 0.343 ms stddev 0.114
progress: 3.0 s, 30433.8 tps, lat 0.326 ms stddev 0.103
progress: 4.0 s, 29597.1 tps, lat 0.336 ms stddev 0.114
progress: 5.0 s, 28714.1 tps, lat 0.346 ms stddev 0.117
progress: 6.0 s, 28319.0 tps, lat 0.351 ms stddev 0.121
progress: 7.0 s, 28540.0 tps, lat 0.348 ms stddev 0.118
progress: 8.0 s, 29408.9 tps, lat 0.338 ms stddev 0.111
progress: 9.0 s, 29178.1 tps, lat 0.340 ms stddev 0.119
progress: 10.0 s, 29146.9 tps, lat 0.341 ms stddev 0.118
progress: 11.0 s, 27498.5 tps, lat 0.361 ms stddev 0.123

这种方法的性能约6万 qps。

优化思路:
排队处理用户请求。类似pgbouncer或Oracle的shared server机制,真实处理请求的进程数有限。

使用PostgreSQL的advisory函数可以模拟这种排队机制:
 
  

create or replace function upd(l int,v_id int) returns void as $$
declare
begin
  LOOP
    if pg_try_advisory_xact_lock(l) then  -- 只有获得这个应用级锁才执行更新,否则就等待。
      update test_8000 set cnt=cnt+1 where id=v_id;
      update test_8000 set cnt=cnt+2 where id=v_id;
      return;
    else
      perform pg_sleep(30*random());  --  随机等待时间
    end if;
  END LOOP;
end;
$$ language plpgsql strict;


增加一个随机变量l,用来表示应用所的号码,也就是说模拟10个同时在更新的操作,其他的都在等待。
这个是没有经过优化的排队机制,因为不是独立的进程处理用户请求,依旧是backend process在处理用户请求,依旧有8000个进程。
 
  

vi t.sql
\setrandom id 1 5000000
\setrandom l 1 10
select upd(:l, :id);
vi test.sh
#!/bin/bash
for ((i=0;i<100;i++))
do
sleep 1;
pgbench -M simple -n -r -f ./t.sql -c 80 -j 80 -T 100000 -U postgres &
done
. ./test.sh

测试结果比较理想,已经提升了1倍性能。
 
  

postgres=# select now(),n_tup_upd+n_tup_hot_upd from pg_stat_all_tables where relname='test_8000'; now | ?column? -------------------------------+----------- 2015-10-08 19:06:37.951332+08 | 221045069 (1 row)
postgres=# select now(),n_tup_upd+n_tup_hot_upd from pg_stat_all_tables where relname='test_8000'; now | ?column? ------------------------------+----------- 2015-10-08 19:07:46.46325+08 | 222879057 (1 row)
postgres=# select timestamptz '2015-10-08 19:07:46.46325+08' - timestamptz '2015-10-08 19:06:37.951332+08'; ?column? ----------------- 00:01:08.511918 (1 row)
postgres=# select 222879057-221045069; ?column? ---------- 1833988 (1 row)
postgres=# select 1833988/68.5; ?column? -------------------- 26773.547445255474 (1 row)

模拟结果,相比不排队,有1倍以上的性能提升。  
TOP
 
  

top - 19:09:37 up 119 days,  3:59,  2 users,  load average: 0.96, 0.98, 1.01
Tasks: 8872 total,   5 running, 8866 sleeping,   1 stopped,   0 zombie
Cpu(s):  5.3%us,  0.8%sy,  0.0%ni, 93.9%id,  0.0%wa,  0.0%hi,  0.0%si,  0.0%st
Mem:  132124976k total, 118066688k used, 14058288k free,   316752k buffers
Swap:  2097144k total,      148k used,  2096996k free, 63702028k cached


advisory lock是PG提供的一种轻量级的面向用户的锁(当然比LWLOCK是要重的),我之前在秒杀场景的优化中也有叙述,可以达到每秒处理19万次的单条记录更新请求的性能,并且保持1毫秒以内的RT。请参考。

把这种优化思路加入到PostgreSQL的内核中是比较靠谱的,最终实现的效果会和Oracle的shared server非常类似。
阿里云PG内核组的小鲜肉和老腊肉们,优化开始搞起吧。
在没有优化前,还是使用pgbouncer这种连接池吧。
相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
2月前
|
Prometheus 网络协议 JavaScript
api 网关 kong 数据库记录请求响应报文
Kong的tcp-log-with-body插件是一个高效的工具,它能够转发Kong处理的请求和响应。这个插件非常适用于需要详细记录API请求和响应信息的情景,尤其是在调试和排查问题时。
47 0
api 网关 kong 数据库记录请求响应报文
|
3月前
|
关系型数据库 MySQL 数据库
深入MySQL数据库进阶实战:性能优化、高可用性与安全性
深入MySQL数据库进阶实战:性能优化、高可用性与安全性
134 0
|
7月前
|
存储 缓存 NoSQL
数据库性能优化中的缓存优化
数据库性能优化中的缓存优化
|
20天前
|
SQL 关系型数据库 MySQL
轻松入门MySQL:深入学习数据库表管理,创建、修改、约束、建议与性能优化(3)
轻松入门MySQL:深入学习数据库表管理,创建、修改、约束、建议与性能优化(3)
|
3月前
|
SQL 关系型数据库 MySQL
后端接口性能优化分析-数据库优化(上)
后端接口性能优化分析-数据库优化
115 0
|
3月前
|
前端开发 数据库 Python
使用 Python 的 Web 框架(如 Django 或 Flask)来建立后端接口,用于处理用户的请求,从数据库中查找答案并返回给前端界面
【1月更文挑战第13天】使用 Python 的 Web 框架(如 Django 或 Flask)来建立后端接口,用于处理用户的请求,从数据库中查找答案并返回给前端界面
86 7
|
3月前
|
SQL 关系型数据库 MySQL
后端接口性能优化分析-数据库优化(下)
后端接口性能优化分析-数据库优化
70 1
|
1月前
|
存储 缓存 负载均衡
数据库性能优化(查询优化、索引优化、负载均衡、硬件升级等方面)
数据库性能优化(查询优化、索引优化、负载均衡、硬件升级等方面)
|
2月前
|
监控 关系型数据库 MySQL
MySQL技能完整学习列表12、性能优化——1、性能指标和监控——2、优化查询和数据库结构——3、硬件和配置优化
MySQL技能完整学习列表12、性能优化——1、性能指标和监控——2、优化查询和数据库结构——3、硬件和配置优化
146 0
|
8月前
|
关系型数据库 分布式数据库 数据库
沉浸式学习PostgreSQL|PolarDB 2: 电商高并发秒杀业务、跨境电商高并发队列消费业务
业务场景介绍: 高并发秒杀业务 秒杀业务在电商中最为常见, 可以抽象成热点记录(行)的高并发更新. 而通常在数据库中最细粒度的锁是行锁, 所以热门商品将会被大量会话涌入, 出现锁等待, 甚至把数据库的会话占满, 导致其他请求无法获得连接产生业务故障. 业务场景介绍: 高并发队列消费业务 在跨境电商业务中可能涉及这样的场景, 由于有上下游产业链的存在, 1、用户下单后, 上下游厂商会在自己系统中生成一笔订单记录并反馈给对方, 2、在收到反馈订单后, 本地会先缓存反馈的订单记录队列, 3、然后后台再从缓存取出订单并进行处理.
324 1