记一次Golang内存分析——基于go pprof

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
全局流量管理 GTM,标准版 1个月
简介: ## 1. 背景 阿里云Redis线上在某些任务流中使用`redis-port`来进行实例之间的数据同步。`redis-port`是一个MIT协议的开源软件,主要原理是从源实例读取RDB快照文件、解析、然后在目标实例上应用灌数据的写命令。为了限制每个进程的最大内存使用,我们使用cgroup来做隔离,最近线上出现redis-port在同步数据时`OOM`的情况,最高内存使用达到了`10G`以上

1. 背景

阿里云Redis线上在某些任务流中使用redis-port来进行实例之间的数据同步。redis-port是一个MIT协议的开源软件,主要原理是从源实例读取RDB快照文件、解析、然后在目标实例上应用灌数据的写命令。为了限制每个进程的最大内存使用,我们使用cgroup来做隔离,最近线上出现redis-port在同步数据时OOM的情况,最高内存使用达到了10G以上,而实际RDB的大小只有4.5GB左右。

2. 分析

2.1 GCTRACE

Golang,自带gc,在不改动代码的情况下,我们可以设置GODEBUG='gctrace=1'环境变量启动程序,来向标准错误输出打印gc log

gc 21 @8.389s 0%: 0.069+4.0+0.16 ms clock, 1.6+2.8/14/10+4.0 ms cpu, 87->88->45 MB, 89 MB goal, 24 P
gc 22 @8.919s 0%: 0.053+3.7+0.63 ms clock, 1.0+1.9/16/12+12 ms cpu, 87->88->44 MB, 90 MB goal, 24 P
gc 23 @9.431s 0%: 0.055+3.9+0.18 ms clock, 1.3+2.6/15/13+4.5 ms cpu, 87->88->45 MB, 89 MB goal, 24 P
gc 24 @9.948s 0%: 0.093+6.0+1.1 ms clock, 2.2+2.3/18/5.6+27 ms cpu, 87->88->44 MB, 90 MB goal, 24 P
gc 25 @10.108s 0%: 0.026+10+0.55 ms clock, 0.63+0/12/15+13 ms cpu, 88->89->66 MB, 89 MB goal, 24 P
gc 26 @10.407s 0%: 0.023+23+0.57 ms clock, 0.56+0/41/3.3+13 ms cpu, 178->178->133 MB, 179 MB goal, 24 P
gc 27 @10.792s 0%: 0.024+45+0.58 ms clock, 0.58+0/63/2.5+14 ms cpu, 282->282->222 MB, 283 MB goal, 24 P
gc 28 @11.560s 0%: 0.023+92+0.13 ms clock, 0.55+0/17/100+3.1 ms cpu, 520->520->399 MB, 521 MB goal, 24 P
gc 29 @13.113s 0%: 0.035+186+0.53 ms clock, 0.85+0/21/187+12 ms cpu, 997->997->755 MB, 998 MB goal, 24 P
gc 30 @14.490s 0%: 0.035+9.2+0.55 ms clock, 0.84+0.20/18/3.0+13 ms cpu, 858->858->518 MB, 1510 MB goal, 24 P
gc 31 @16.208s 0%: 0.032+381+0.15 ms clock, 0.77+0/400/3.5+3.7 ms cpu, 1610->1610->1466 MB, 1611 MB goal, 24 P
gc 32 @16.841s 0%: 0.024+9.6+0.12 ms clock, 0.59+0.12/15/6.7+3.0 ms cpu, 1488->1489->993 MB, 2932 MB goal, 24 P
gc 33 @22.381s 0%: 0.026+752+0.14 ms clock, 0.64+0/18/760+3.3 ms cpu, 3358->3359->2888 MB, 3359 MB goal, 24 P
gc 34 @23.237s 0%: 0.020+7.7+0.12 ms clock, 0.49+0.14/17/2.0+2.9 ms cpu, 2889->2889->1940 MB, 5776 MB goal, 24 P
gc 35 @34.475s 0%: 0.032+9.9+0.11 ms clock, 0.77+0.65/17/9.3+2.7 ms cpu, 2910->2910->1940 MB, 3881 MB goal, 24 P
gc 36 @34.732s 0%: 0.025+1412+0.13 ms clock, 0.60+0/1422/10+3.2 ms cpu, 5746->5746->5732 MB, 5747 MB goal, 24 P
gc 37 @54.129s 0%: 0.028+9.9+0.12 ms clock, 0.67+0.95/18/11+3.0 ms cpu, 7274->7274->3836 MB, 11464 MB goal, 24 P
gc 38 @59.297s 0%: 0.032+2910+0.13 ms clock, 0.78+0/2920/13+3.2 ms cpu, 11847->11847->11420 MB, 11848 MB goal, 24 P
gc 39 @64.199s 02010.046+29024+0.32 ms clock, 1.1+0/18/3195+7.7 ms cpu, 15532->15532->11577 MB, 22840 MB goal, 24 P

上面是部分gc log,gc后面的数字表示是第几次gc,@后面的数字表示程序启动经历的时间,后面几项和gc消耗的cpu时间有关,在分析gc导致的程序hang时很有用,但是不是我们这次关注的重点,主要看下倒数第2和第3项

#->#-># MB  heap size at GC start, at GC end, and live heap
# MB goal   goal heap size (这个解释一下,每次gc circle完,gc会根据当前分配的堆内存大小和GOGC环境变量,计算下一次gc的目标内存大小,如果后面内存使用没有超过这个goal,gc不会用力太猛)

从这个gc log我们可以看到从某个时间点开始,内存使用开始猛增,gc基本没有回收多少内存,看了下源实例的key情况,主要是string类型和hash类型,而且hash类型存在大key(一个hash有2800w的member,不过不建议大家这么使用,尽量打散到单个hash 10w以内),所以这里怀疑是先从RDB读了一部分string,然后读到大key的时候内存突增。有了方向,要确认详细原因,就要祭出大杀器Golang pprof了。

2.2 Golang pprof

分析内存使用要是光撸代码还是比较困难的,总要借助一些工具。Golang pprof是Golang官方的profiling工具,非常强大,使用也比较方便。

我们在程序中嵌入如下几行代码,

import _ "net/http/pprof"

go func() {
    http.ListenAndServe("0.0.0.0:8899", nil)
}()

在浏览器中输入http://ip:8899/debug/pprof/可以看到一个汇总页面,

/debug/pprof/

profiles:
0    block
32    goroutine
552    heap
0    mutex
51    threadcreate

full goroutine stack dump

其中heap项是我们需要关注的信息,

heap profile: 96: 1582948832 [21847: 15682528480] @ heap/1048576
91: 1527472128 [246: 4129210368] @ 0x471d87 0x471611 0x4718cd 0x4689bf 0x50deb9 0x50d7ac 0x75893b 0x45d801
#    0x471d86    bytes.makeSlice+0x76                            /usr/local/go/src/bytes/buffer.go:231
#    0x471610    bytes.(*Buffer).grow+0x140                        /usr/local/go/src/bytes/buffer.go:133
#    0x4718cc    bytes.(*Buffer).Write+0xdc                        /usr/local/go/src/bytes/buffer.go:163
#    0x4689be    io.(*multiWriter).Write+0x8e                        /usr/local/go/src/io/multi.go:60
#    0x50deb8    github.com/CodisLabs/redis-port/pkg/rdb.createValueDump+0x198        go_workspace/src/github.com/CodisLabs/redis-port/pkg/rdb/loader.go:194
#    0x50d7ab    github.com/CodisLabs/redis-port/pkg/rdb.(*Loader).NextBinEntry+0x28b    go_workspace/src/github.com/CodisLabs/redis-port/pkg/rdb/loader.go:176
#    0x75893a    main.newRDBLoader.func1+0x23a                        go_workspace/src/github.com/CodisLabs/redis-port/cmd/utils.go:733
......

包括一些汇总信息,和各个go routine的内存开销,不过这里除了第一行信息比较直观,其他的信息太离散。可以看到当前使用的堆内存是1.58GB,总共分配过15.6GB。

heap profile: 96(inused_objects): 1582948832(inused_bytes) [21847(allocated_objects): 15682528480(allocted_bytes)] @ heap/1048576

更有用的信息我们需要借助go tool pprof来进行分析,

go tool pprof -alloc_space/-inuse_space http://ip:8899/debug/pprof/heap

这里有两个选项,-alloc_space和-inuse_space,从名字应该能看出二者的区别,不过条件允许的话,我们优先使用-inuse_space来分析,因为直接分析导致问题的现场比分析历史数据肯定要直观的多,一个函数alloc_space多不一定就代表它会导致进程的RSS高,因为我们比较幸运可以在线下复现这个OOM的场景,所以直接用-inuse_space。

这个命令进入后,是一个类似gdb的交互式界面,输入top命令可以前10大的内存分配,flat是堆栈中当前层的inuse内存值,cum是堆栈中本层级的累计inuse内存值(包括调用的函数的inuse内存值,上面的层级),

(pprof) top
Showing nodes accounting for 3.73GB, 99.78% of 3.74GB total
Dropped 5 nodes (cum <= 0.02GB)
Showing top 10 nodes out of 16
      flat  flat%   sum%        cum   cum%
    3.70GB 98.94% 98.94%     3.70GB 98.94%  bytes.makeSlice /usr/local/go/src/bytes/buffer.go
    0.03GB  0.83% 99.78%     0.03GB  0.83%  main.(*cmdRestore).Main /usr/local/go/src/bufio/bufio.go
         0     0% 99.78%     3.70GB 98.94%  bytes.(*Buffer).Write /usr/local/go/src/bytes/buffer.go
         0     0% 99.78%     3.70GB 98.94%  bytes.(*Buffer).grow /usr/local/go/src/bytes/buffer.go
         0     0% 99.78%     3.70GB 98.94%  github.com/CodisLabs/redis-port/pkg/rdb.(*Loader).NextBinEntry go_workspace/src/github.com/CodisLabs/redis-port/pkg/rdb/loader.go
         0     0% 99.78%     3.70GB 98.94%  github.com/CodisLabs/redis-port/pkg/rdb.(*rdbReader).Read go_workspace/src/github.com/CodisLabs/redis-port/pkg/rdb/reader.go
         0     0% 99.78%     3.70GB 98.94%  github.com/CodisLabs/redis-port/pkg/rdb.(*rdbReader).ReadBytes go_workspace/src/github.com/CodisLabs/redis-port/pkg/rdb/reader.go
         0     0% 99.78%     3.70GB 98.94%  github.com/CodisLabs/redis-port/pkg/rdb.(*rdbReader).ReadString go_workspace/src/github.com/CodisLabs/redis-port/pkg/rdb/reader.go
         0     0% 99.78%     3.70GB 98.94%  github.com/CodisLabs/redis-port/pkg/rdb.(*rdbReader).readFull go_workspace/src/github.com/CodisLabs/redis-port/pkg/rdb/reader.go
         0     0% 99.78%     3.70GB 98.94%  github.com/CodisLabs/redis-port/pkg/rdb.(*rdbReader).readObjectValue go_workspace/src/github.com/CodisLabs/redis-port/pkg/rdb/reader.go

可以看到大部分内存都是 bytes.makeSlice产生的(flat 98.94%),不过这是一个标准库函数,再撸撸代码,往下看可以看到redis-port实现的函数(*Loader).NextBinEntry,这里推荐使用list命令,

(pprof) list NextBinEntry
Total: 3.74GB
ROUTINE ======================== github.com/CodisLabs/redis-port/pkg/rdb.(*Loader).NextBinEntry in go_workspace/src/github.com/CodisLabs/redis-port/pkg/rdb/loader.go
         0     3.70GB (flat, cum) 98.94% of Total
         .          .    137:           default:
         .          .    138:                   key, err := l.ReadString()
         .          .    139:                   if err != nil {
         .          .    140:                           return nil, err
         .          .    141:                   }
         .     3.70GB    142:                   val, err := l.readObjectValue(t)
         .          .    143:                   if err != nil {
         .          .    144:                           return nil, err
         .          .    145:                   }
         .          .    146:                   entry.DB = l.db
         .          .    147:                   entry.Key = key

可以直接看到这个函数在哪一行代码产生了多少的内存!不过如果是在可以方便导出文件的测试环境,推荐使用命令,

go tool pprof -inuse_space -cum -svg http://ip:8899/debug/pprof/heap > heap_inuse.svg

image.png

这个可以得到前后调用关系的调用栈图,同时还包括每一层的inuse 内存大小,文件名,函数,到下一层的内存大小,分析起来简直不能再顺手。

最后定位原因就比较简单了,redis-port在解析RDB时,是按key为粒度来处理的,遇到大key时,value可能有好几个GB,然后redis-port直接使用了标准库bytes.Buffer来存储解析出来的value(对于redis hash来说是field,value对),Buffer在空间不够的时候会自己grow,策略是当前capacity 2倍的增长速度,避免频繁内存分配,看看标准库的代码(go 1.9)

// grow grows the buffer to guarantee space for n more bytes.
// It returns the index where bytes should be written.
// If the buffer can't grow it will panic with ErrTooLarge.
func (b *Buffer) grow(n int) int {
......
    } else {
        // Not enough space anywhere, we need to allocate.
        buf := makeSlice(2*cap(b.buf) + n)
        copy(buf, b.buf[b.off:])
        b.buf = buf
    }
......
}

Buffer在空间不够时,申请一个当前空间2倍的byte数组,然后把老的copy到这里,这个峰值内存就是3倍的开销,如果value大小5GB,读到4GB空间不够,那么创建一个8GB的新buffer,那么峰值就是12GB了,此外Buffer的初始大小是64字节,在增长到4GB的过程中也会创建很多的临时byte数组,gc不及时也是额外的内存开销,所以4.5GB的RDB,在有大key的情况下,峰值内存用到15GB也就可以理解了。

  1. Fix

这个问题的根本原因还是按key处理一次读的value太大,在碰到hash这种复杂数据类型时,其实我们可以分而治之,读了一部分value后,比如16MB就生成一个子hash,避免Buffer grow产生太大的临时对象。

此外,解析RDB时,受限于RDB的格式,只能单个go routine处理,但是回放时,是可以由多个go routine来并发处理多个子hash,写到目标实例的。每个子hash处理完,又可以被gc及时的清理掉。同时并发度上去了,同步的速度也有所提升(主要受限于目标Redis,因为Redis是单线程处理请求)。

youhuaqian1.png

youhuahou1.png

最后,做个简单的对比,可以看到优化后redis-port的RSS峰值为2.6GB,和之前相比降低了80%

参考

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
1月前
|
Web App开发 监控 JavaScript
监控和分析 JavaScript 内存使用情况
【10月更文挑战第30天】通过使用上述的浏览器开发者工具、性能分析工具和内存泄漏检测工具,可以有效地监控和分析JavaScript内存使用情况,及时发现和解决内存泄漏、过度内存消耗等问题,从而提高JavaScript应用程序的性能和稳定性。在实际开发中,可以根据具体的需求和场景选择合适的工具和方法来进行内存监控和分析。
|
21天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
50 1
|
23天前
|
JavaScript
如何使用内存快照分析工具来分析Node.js应用的内存问题?
需要注意的是,不同的内存快照分析工具可能具有不同的功能和操作方式,在使用时需要根据具体工具的说明和特点进行灵活运用。
39 3
|
29天前
|
Go API 数据库
Go 语言中常用的 ORM 框架,如 GORM、XORM 和 BeeORM,分析了它们的特点、优势及不足,并从功能特性、性能表现、易用性和社区活跃度等方面进行了比较,旨在帮助开发者根据项目需求选择合适的 ORM 框架。
本文介绍了 Go 语言中常用的 ORM 框架,如 GORM、XORM 和 BeeORM,分析了它们的特点、优势及不足,并从功能特性、性能表现、易用性和社区活跃度等方面进行了比较,旨在帮助开发者根据项目需求选择合适的 ORM 框架。
76 4
|
1月前
|
编译器 Go
探索 Go 语言中的内存对齐:为什么结构体大小会有所不同?
在 Go 语言中,内存对齐是优化内存访问速度的重要概念。通过调整数据在内存中的位置,编译器确保不同类型的数据能够高效访问。本文通过示例代码展示了两个结构体 `A` 和 `B`,尽管字段相同但排列不同,导致内存占用分别为 40 字节和 48 字节。通过分析内存布局,解释了内存对齐的原因,并提供了优化结构体字段顺序的方法,以减少内存填充,提高性能。
41 3
|
29天前
|
中间件 Go API
Go语言中几种流行的Web框架,如Beego、Gin和Echo,分析了它们的特点、性能及适用场景,并讨论了如何根据项目需求、性能要求、团队经验和社区支持等因素选择最合适的框架
本文概述了Go语言中几种流行的Web框架,如Beego、Gin和Echo,分析了它们的特点、性能及适用场景,并讨论了如何根据项目需求、性能要求、团队经验和社区支持等因素选择最合适的框架。
70 1
|
1月前
|
开发框架 监控 .NET
【Azure App Service】部署在App Service上的.NET应用内存消耗不能超过2GB的情况分析
x64 dotnet runtime is not installed on the app service by default. Since we had the app service running in x64, it was proxying the request to a 32 bit dotnet process which was throwing an OutOfMemoryException with requests >100MB. It worked on the IaaS servers because we had the x64 runtime install
|
1月前
|
Web App开发 JavaScript 前端开发
使用 Chrome 浏览器的内存分析工具来检测 JavaScript 中的内存泄漏
【10月更文挑战第25天】利用 Chrome 浏览器的内存分析工具,可以较为准确地检测 JavaScript 中的内存泄漏问题,并帮助我们找出潜在的泄漏点,以便采取相应的解决措施。
250 9
|
1月前
|
安全 Go 开发者
代码之美:Go语言并发编程的优雅实现与案例分析
【10月更文挑战第28天】Go语言自2009年发布以来,凭借简洁的语法、高效的性能和原生的并发支持,赢得了众多开发者的青睐。本文通过两个案例,分别展示了如何使用goroutine和channel实现并发下载网页和构建并发Web服务器,深入探讨了Go语言并发编程的优雅实现。
37 2
|
1月前
|
Java 编译器 测试技术
go语言避免不必要的内存分配
【10月更文挑战第18天】
48 1