《图解Spark:核心技术与案例实战》介绍及书附资源

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本书中所使用到的测试数据、代码和安装包放在百度盘提供 下载 ,链接: https://pan.baidu.com/s/1ht1Fipm 密码: wm35

 另外在百度盘提供本书附录  下载 ,链接: https://pan.baidu.com/s/1c4aZjpQ 密码: ibv4

 

为什么要写这本书

在过去的十几年里,由于计算机普遍应用和互联网的普及数据呈现了爆发式增长,在这个背景下Doug Cutting受到谷歌两篇论文(GFS和MapReduce)的启发下开发Nutch项目, 2006年Hadoop脱离了Nutch,成为Apache的顶级项目,带动了大数据发展新十年。在这段时间中,大数据开源产品如雨后春笋层出不穷,特别是2009年由加州大学伯克利分校AMP实验室开发的Spark,它以内存迭代计算的高效和各组件所形成一栈式解决平台成为这些产品的翘楚。

Spark在2013年6月成为Apache孵化项目,8个月后成为其顶级项目,在2014年5月份发布了1.0版本,在2016年7月份正式发布了2.0版本,在这个过程中Spark社区不断壮大,成为了最为活跃的大数据社区之一。作为大数据处理的“利器”,Spark在发展过程中不断地演进,在各个版本存在较大的差异,市面上关于介绍的Spark已经不少,但是这些书基于Spark版本稍显陈旧,另外在介绍Spark的时候未能把原理、代码和实例相结合,基于这个情况笔者便有了写一本在剖析Spark原理的同时结合实际实例,从而让读者能够更加深入理解和掌握Spark。

在本书中先对Spark的生态圈进行了介绍,讲述了Spark的发展历程,同时也介绍Spark实战环境的搭建,接下来从Spark的编程模型、作业执行、存储原理和运行架构等方面讲解了Spark内部核心原理,最后对Spark的各组件进行详细介绍,这些组件包括了Spark SQL的即席查询、Spark Streaming的实时流处理应用、MLbase/MLlib的机器学习、GraphX的图处理、SparkR的数学计算和Alluxio的分布式内存文件系统等。

读者对象

(1) 大数据爱好者

随着大数据时代的来临,无论传统行业、IT行业以及互联网等行业都将涉及到大数据技术,本书能够帮助这些行业的大数据爱好者了解Spark生态圈和发展演进趋势。通过本书可以了解到Spark特点和使用的场景,如果希望继续深入学习Spark知识,该书也是很好的入门选择。

(2) Spark开发人员

如果要进行Spark应用的开发,仅仅掌握Spark基本使用方法是不够的,还需深入了解Spark的设计原理、架构和运行机制。在本书中将深入浅出地讲解Spark的编程模型、作业运行机制、存储原理和运行架构等内容,通过这些内容的学习,可以编写出更加高效的应用程序。

(3) Spark运维人员

作为一名Spark运维人员,适当了解Spark的设计原理、架构和运行机制对于运维工作十分有帮助。通过该书的学习,不仅能够更快地定位并排除故障,而且还能够对Spark运行进行调优,让Spark运行更加稳定和快速。

(4) 数据科学家和算法研究

随着大数据技术的发展,实时流计算、机器学习、图计算等领域成为较热的研究方向,由于Spark有着较为成熟的生态圈,能够一栈式解决类似场景的问题。这些研究人员可以通过本书加深对Spark的原理和应用场景的理解,能够更好地利用Spark各个组件进行数据计算和算法实现。

内容速览

本书分为三个部分,共计12章。

第一部分为基础篇(第1~2章),介绍了Spark诞生的背景、演进历程,介绍了Spark生态圈的组成,并详细地介绍如何搭建Spark实战环境,通过该环境不仅可以阅读Spark源代码,而且可以开发Spark应用程序。

第二部分为核心篇(第3~6章),讲解了Spark的编程模型、核心原理、存储原理和运行架构,在核心原理中对Spark通信机制、作业执行原理、调度算法、容错和监控管理等进行了深入的分析,在分析原理和代码的同时结合实例进行演示。

第三部分为组件篇(第7~12章),介绍了Spark的各个组件,包括了Spark SQL的即席查询、Spark Streaming的实时流处理应用、MLbase/MLlib的机器学习、GraphX的图处理、SparkR的数学计算和Alluxio的分布式内存文件系统等。

另外本书后面还包括5个附录:附录A为编译安装Hadoop,附录B为安装MySql数据库,附录C为编译安装Hive,附录D为安装ZooKeeper,附录E为安装Kafka。由于该书篇幅的限制,这些内容在作者的博客可以下载。

勘误和支持

由于笔者的水平有限,加之编写时间跨度较长,同时Spark演进较快,在编写此书的过程中难免会出现错误或者不准确的地方,恳请读者批评指正。如果本书存有错误,或者您有Spark的内容需要探讨,可以发送邮件到jan98341@qq.com进行联系,期待能够得到大家的反馈。

致谢

感谢中油瑞飞公司,让我接触到大数据的世界,并工作的过程中深入了解Spark,感谢吴建平、于鹏、李新宅、祝军、张文逵、马君博士、卢文君等领导同事,在本书编写中提供无私的帮助和宝贵的建议。

感谢京东商城的付彩宝、沈晓凯对我工作和该书的支持,感谢付彩宝在繁忙的工作为本书写推荐,感谢京东数据挖掘架构师何云龙为我作序,感谢大数据平台部的周龙波对该书提出了宝贵意见。

感谢EMC常雷博士为本书审稿并写推荐。

感谢Alluxio CEO的李浩源博士对本书的支持,感谢范斌在非常忙的工作中,抽出时间给Alluxio章节进行了审稿并提供了很好的建议。

感谢电子出版社的安娜编辑,正式由于她耐心和支持才让本书的得以出版。

感谢我的家人对自己的支持和理解,特别是在写书过程中老婆又添猴宝宝,让自己拥有一对健康可爱的儿女,这些给自己莫大的动力,让自己的努力更加有意义。

谨以此书先给我亲爱的家人,你们是我努力的源泉。








本文转自shishanyuan博客园博客,原文链接:  http://www.cnblogs.com/shishanyuan/p/6195689.html  ,如需转载请自行联系原作者




相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
6月前
|
机器学习/深度学习 SQL 分布式计算
Spark核心原理与应用场景解析:面试经验与必备知识点解析
本文深入探讨Spark核心原理(RDD、DAG、内存计算、容错机制)和生态系统(Spark SQL、MLlib、Streaming),并分析其在大规模数据处理、机器学习及实时流处理中的应用。通过代码示例展示DataFrame操作,帮助读者准备面试,同时强调结合个人经验、行业趋势和技术发展以展现全面的技术实力。
506 0
|
SQL 分布式计算 大数据
大数据Spark框架概述
大数据Spark框架概述
204 0
|
29天前
|
消息中间件 分布式计算 Kafka
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
37 0
|
存储 SQL 分布式计算
大数据入门与实战-Spark上手
大数据入门与实战-Spark上手
142 0
大数据入门与实战-Spark上手
|
SQL 分布式计算 Kubernetes
图解 DataX 核心设计原理
前段时间我在 K8s 相关文章中有提到过数据同步的项目,该项目就是基于 DataX 内核构建的,由于公司数据同步的需求,还需要在 DataX 原有的基础上支持增量同步功能,同时支持分布式调度,在「使用 K8s 进行作业调度实战分享」这篇文章中已经详细描述其中的实现。
1008 0
图解 DataX 核心设计原理
|
分布式计算 算法 大数据
|
存储 分布式计算 资源调度
|
SQL 分布式计算 Hadoop
【小白视角】大数据基础实践(七) Spark的基本操作
目录 1. Spark概述 1.1 背景 1.2 特点 1.3 使用趋势 2. Spark生态系统 2.1 Spark与Hadoop的对比。 2.2 Job 2.3 容错率 2.4 通用性 2.5 实际应用 2.6 Spark生态系统组件的应用场景 2.7 Spark组件 2.7.1 Spark Core 2.7.2 Spark SQL 2.7.3 Spark Streaming 2.7.4 MLlib 2.7.5 Graphx 2.7.6 Cluster Managers 3. Spark运行架构 3.1 基本概念 3.2 架构设计 3.3 Spark 运行基本流程 3.4 Spark 运行
350 0
【小白视角】大数据基础实践(七) Spark的基本操作
|
分布式计算 Spark 机器学习/深度学习
在内存计算时代,看阿里如何用Spark来进行实践与探索
本文PPT来自阿里云技术专家曹龙(花名:封神)于10月16日在2016年杭州云栖大会上发表的《阿里巴巴Spark实践与探索——内存计算时代》。
5330 0