DllMain和多线程死锁

简介:

估计很多人都知道装载DLL过程中的多线程死锁是因为DllMain的顺序调用规则,但是很少人了解卸载DLL过程中的多线程死锁也是由于同样的原因。例如,如果一个DLLDllMain的代码写成下面的形式,且进程中有至少一个DLLDllMain没有调用DisableThreadLibraryCalls函数的话,那么卸载该DLL过程中就会因为DllMain的顺序操作特性带来DLL内部线程没有完全退出的错误。   

复制代码
//----------------------start ------------

HANDLE       g_thread_handle =NULL;      // 该DLL内部线程的句柄

DWORD       g_thread_id =0;      // 该DLL内部线程的ID

HANDLE g_hEvent=NULL;// 应答事件的句柄

 

DWORD WINAPI InSideDll_ThreadProc( LPVOID p )

{

       while(1){ 

              // 收到通知就退出线程函数

              DWORD ret = ::WaitForSingleObject( g_hEvent, INFINITE );

              if(WAIT_TIMEOUT = =ret|| WAIT_OBJECT_0 = =ret) break;

       }     

       return true ;

}

 

BOOL APIENTRY DllMain( HANDLE hModule, 

                       DWORD ul_reason_for_call, 

                       LPVOID lpReserved

                                   )

{

    switch (ul_reason_for_call)   

       {

              case DLL_PROCESS_ATTACH:

              //线程正在映射到进程地址空间中

                     {

                            // 创建DLL内的线程使用的事件对象

                            g_hEvent = ::CreateEvent( NULL, FALSE, FALSE, _T("hello11" ));

                            //创建DLL内的线程对象

                            g_thread_handle = ::CreateThread(NULL,0, 

                                   InSideDll_ThreadProc,(LPVOID)0,0,   &( g_thread_id) ) ;

                            // 禁止线程库调用,

                            DisableThreadLibraryCalls((HINSTANCE)hModule);

                     }

                     break;

              case DLL_PROCESS_DETACH:

              // DLL正在从进程地址空间中卸载

                     {

                            // 通知内部的线程g_thread_handle 退出

                            ::SetEvent(g_hEvent);

                            // 等待内部的线程g_thread_handle 退出

                            ::WaitForSingleObject(g_thread_handle, INFINITE ) ;

                            // 清除资源

::CloseHandle(g_thread_handle);

                            g_thread_id = 0 ;

                            g_thread_handle = NULL ;                  

                            ::CloseHandle(g_hEvent);

                            g_hEvent=NULL;

                     }

                     break;

    }

    return TRUE;

}

//----------------------end ------------
复制代码

 

 

 

上述代码的流程是这样的:

       (1)装载DLL时,创建一个 DLL内部的线程g_thread_handle及事件对象g_hEvent,且线程g_thread_handle在事件对象g_hEvent上等待。

       (2)卸载DLL时,通过SetEvent(g_hEvent)通知线程g_thread_handle退出,随即调用WaitForSingleObject函数等待线程g_thread_handle终止运行。如果线程g_thread_handle终止运行,则执行清除工作。

 

但是如果对这样的程序进行调试,就会发现程序在退出时该DllMain没有退出,等待了很长时间也没有退出。

查看了一下线程Call Stack窗口,注意到程序正在等待DllMain内部的线程g_thread_handle的退出。尽管线程g_thread_handle的线程函数已经返回了,但是整个g_thread_handle线程走到了操作系统的ntdll.dll中并没有完全终止,从而导致整个DLL不能顺利释放。

       线程g_thread_handle为什么没有完全退出呢?

原来,线程函数返回时,系统并不立即将它撤消。相反,系统要取出这个即将被撤消的线程,让它调用已经映射的DLL的所有带有DLL_THREAD_DETACH值的、且没有调用DisableThreadLibraryCalls函数的DllMain函数。DLL_THREAD_DETACH通知告诉所有的DLL执行每个线程的清除操作,例如,DLL版本的C/C++运行期库能够释放它用于管理多线程应用程序的数据块。DisableThreadLibraryCalls函数告诉系统说,特定的DLLDllMain函数不用接收DLL_THREAD_ATTACHDLL_THREAD_DETACH通知。

但是,系统是顺序调用DLLDllMain函数的。

当线程函数返回时,系统检查进程中是否存在没有调用DisableThreadLibraryCalls函数的DllMain函数,如果存在,系统就以进程的互斥对象的句柄作为第一个参数,在线程内部调用WaitForSingleObject函数。一旦这个将要终止运行的线程拥有该进程互斥对象,系统就让该线程用DLL_THREAD_DETACH的值依次调用每个没有调用DisableThreadLibraryCalls函数的DLLDllMain函数。此后,系统才释放对进程互斥对象的所有权。

在本例所述的应用程序中,进程的退出引起操作系统获取进程互斥对象使操作系统可以为DLL_PROCESS_DETACH通知调用DllMain()。该DLLDllMain()函数通知线程g_thread_handle终止运行。无论何时当进程终止一个线程时,操作系统将获取进程互斥对象,以便于它可以为DLL_THREAD_DETACH通知调用每个加载的、没有调用DisableThreadLibraryCalls函数的DLLDllMain函数。在这个特定的程序中,线程g_thread_handle当线程函数返回后就阻塞了,因为CMySingletonDllMain()所处的线程还保持着进程互斥对象。不幸的是,DllMain所处的线程然后调用WaitForSingleObject确认g_thread_handle线程是否完全终止。因为g_thread_handle线程被阻塞在进程互斥对象上,这个进程互斥对象还被DllMain线程所持有, DllMain线程要等待g_thread_handle线程从而也被阻塞,结果就导致了死锁。如下图所示:

 

 

注意,从图2可以看出,如果当前进程中的所有 DLL都调用了DisableThreadLibraryCalls函数,那么上述代码中的DLL也能正常退出。曾经写过一个程序,除了加载一个这样有问题的DLL没有加载其他DLL(系统的DLL除外),程序能够正常退出。

3、结论

    很显然的一个教训就是在DllMain内部应该避免任何Wait*调用。但是进程互斥对象的问题不仅仅限于Wait*函数。操作系统在CreateProcessGetModuleFileNameGetProcAddresswglMakeCurrentLoadLibraryFreeLibrary等函数中在后台获取进程互斥对象,因此在DllMain中不应该调用任何这些函数。因为DllMain获取进程互斥对象,所以一次只能有一个线程执行DllMain

       ATL singleton FinalConstruct函数和FinalRelease函数分别是DllMain在响应DLL_PROCESS_ATTACHDLL_PROCESS_DETACH时被调用的,所以也要同样注意本文所述的问题

 

 

相关文章
|
1月前
|
Java 数据库连接 数据库
不同业务使用同一个线程池发生死锁的技术探讨
【10月更文挑战第6天】在并发编程中,线程池是一种常用的优化手段,用于管理和复用线程资源,减少线程的创建和销毁开销。然而,当多个不同业务场景共用同一个线程池时,可能会引发一系列并发问题,其中死锁就是最为严重的一种。本文将深入探讨不同业务使用同一个线程池发生死锁的原因、影响及解决方案,旨在帮助开发者避免此类陷阱,提升系统的稳定性和可靠性。
49 5
|
1月前
|
安全 Java 程序员
【多线程-从零开始-肆】线程安全、加锁和死锁
【多线程-从零开始-肆】线程安全、加锁和死锁
44 0
|
3月前
|
安全 算法 Java
17 Java多线程(线程创建+线程状态+线程安全+死锁+线程池+Lock接口+线程安全集合)(下)
17 Java多线程(线程创建+线程状态+线程安全+死锁+线程池+Lock接口+线程安全集合)
77 6
|
3月前
|
存储 安全 Java
17 Java多线程(线程创建+线程状态+线程安全+死锁+线程池+Lock接口+线程安全集合)(中)
17 Java多线程(线程创建+线程状态+线程安全+死锁+线程池+Lock接口+线程安全集合)
86 5
|
3月前
|
存储 安全 Java
17 Java多线程(线程创建+线程状态+线程安全+死锁+线程池+Lock接口+线程安全集合)(上)
17 Java多线程(线程创建+线程状态+线程安全+死锁+线程池+Lock接口+线程安全集合)
84 3
|
3月前
|
Java
Java多线程-死锁的出现和解决
死锁是指多线程程序中,两个或以上的线程在运行时因争夺资源而造成的一种僵局。每个线程都在等待其中一个线程释放资源,但由于所有线程都被阻塞,故无法继续执行,导致程序停滞。例如,两个线程各持有一把钥匙(资源),却都需要对方的钥匙才能继续,结果双方都无法前进。这种情况常因不当使用`synchronized`关键字引起,该关键字用于同步线程对特定对象的访问,确保同一时刻只有一个线程可执行特定代码块。要避免死锁,需确保不同时满足互斥、不剥夺、请求保持及循环等待四个条件。
|
3月前
|
Java 测试技术 PHP
父子任务使用不当线程池死锁怎么解决?
在Java多线程编程中,线程池有助于提升性能与资源利用效率,但若父子任务共用同一池,则可能诱发死锁。本文通过一个具体案例剖析此问题:在一个固定大小为2的线程池中,父任务直接调用`outerTask`,而`outerTask`再次使用同一线程池异步调用`innerTask`。理论上,任务应迅速完成,但实际上却超时未完成。经由`jstack`输出的线程调用栈分析发现,线程陷入等待状态,形成“死锁”。原因是子任务需待父任务完成,而父任务则需等待子任务执行完毕以释放线程,从而相互阻塞。此问题在测试环境中不易显现,常在生产环境下高并发时爆发,重启或扩容仅能暂时缓解。
|
4月前
|
消息中间件 算法 Java
(十四)深入并发之线程、进程、纤程、协程、管程与死锁、活锁、锁饥饿详解
本文深入探讨了并发编程的关键概念和技术挑战。首先介绍了进程、线程、纤程、协程、管程等概念,强调了这些概念是如何随多核时代的到来而演变的,以满足高性能计算的需求。随后,文章详细解释了死锁、活锁与锁饥饿等问题,通过生动的例子帮助理解这些现象,并提供了预防和解决这些问题的方法。最后,通过一个具体的死锁示例代码展示了如何在实践中遇到并发问题,并提供了几种常用的工具和技术来诊断和解决这些问题。本文旨在为并发编程的实践者提供一个全面的理解框架,帮助他们在开发过程中更好地处理并发问题。
|
5月前
|
Arthas 监控 Java
深入解析与解决高并发下的线程池死锁问题
在高并发的互联网应用中,遇到线程池死锁问题导致响应延迟和超时。问题源于库存服务的悲观锁策略和线程池配置不当。通过以下方式解决:1) 采用乐观锁(如Spring Data JPA的@Version注解)替换悲观锁,减少线程等待;2) 动态调整线程池参数,如核心线程数、最大线程数和拒绝策略,以适应业务负载变化;3) 实施超时和重试机制,减少资源占用。这些改进提高了系统稳定性和用户体验。
224 2
|
5月前
|
Java
在Java中,死锁是指两个或多个线程互相等待对方释放资源,从而导致所有线程都无法继续执行的情况。
【6月更文挑战第24天】在Java并发中,死锁是多线程互相等待资源导致的僵局。避免死锁的关键策略包括:防止锁嵌套,设定固定的加锁顺序,使用`tryLock`带超时,避免无限等待,减少锁的持有时间,利用高级同步工具如`java.util.concurrent`,以及实施死锁检测和恢复机制。通过这些方法,可以提升程序的并发安全性。
43 1