MySQL · 源码分析 · InnoDB的read view,回滚段和purge过程简介

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 笔者最近开始学习InnoDB的内部机制,参照之前的几篇文章整理出InnoDB多版本部分相关的一些实现原理。InnoDB undo log 漫游性能优化·5.7 Innodb事务系统InnoDB 事务系统[MySQL 5.6] Innodb 新特性之 multi purge thread innodb purge操作对于undo日志,第1篇文章写得非常清楚,图文并茂。

笔者最近开始学习InnoDB的内部机制,参照之前的几篇文章整理出InnoDB多版本部分相关的一些实现原理。

InnoDB undo log 漫游

性能优化·5.7 Innodb事务系统

InnoDB 事务系统

[MySQL 5.6] Innodb 新特性之 multi purge thread

innodb purge操作

对于undo日志,第1篇文章写得非常清楚,图文并茂。本文有关undo的大部分内容也是取自此文,这里只是以笔者的视角重新组织描述一下。

在此特别感谢前面同学多年的积累和热心分享:)

笔者属于学习阶段,如描述有问题请多指正。

Read view

InnoDB支持MVCC多版本,其中RC(Read Committed)和RR(Repeatable Read)隔离级别是利用consistent read view(一致读视图)方式支持的。 所谓consistent read view就是在某一时刻给事务系统trx_sys打snapshot(快照),把当时trx_sys状态(包括活跃读写事务数组)记下来,之后的所有读操作根据其事务ID(即trx_id)与snapshot中的trx_sys的状态作比较,以此判断read view对于事务的可见性。

Read view中保存的trx_sys状态主要包括

  • low_limit_id:high water mark,大于等于view->low_limit_id的事务对于view都是不可见的
  • up_limit_id:low water mark,小于view->up_limit_id的事务对于view一定是可见的
  • low_limit_no:trx_no小于view->low_limit_no的undo log对于view是可以purge的
  • rw_trx_ids:读写事务数组

RR隔离级别(除了Gap锁之外)和RC隔离级别的差别是创建snapshot时机不同。 RR隔离级别是在事务开始时刻,确切地说是第一个读操作创建read view的;RC隔离级别是在语句开始时刻创建read view的。

创建/关闭read view需要持有trx_sys->mutex,会降低系统性能,5.7版本对此进行优化,在事务提交时session会cache只读事务的read view。

下次创建read view,判断如果是只读事务并且系统的读写事务状态没有发生变化,即trx_sys的max_trx_id没有向前推进,而且没有新的读写事务产生,就可以重用上次的read view。

Read view创建之后,读数据时比较记录最后更新的trx_id和view的high/low water mark和读写事务数组即可判断可见性。

如前所述,如果记录最新数据是当前事务trx的更新结果,对应当前read view一定是可见的。

除此之外可以通过high/low water mark快速判断:

  • trx_id < view->up_limit_id的记录对于当前read view是一定可见的;
  • trx_id >= view->low_limit_id的记录对于当前read view是一定不可见的;

如果trx_id落在[up_limit_id, low_limit_id),需要在活跃读写事务数组查找trx_id是否存在,如果存在,记录对于当前read view是不可见的。

由于InnoDB的二级索引只保存page最后更新的trx_id,当利用二级索引进行查询的时候,如果page的trx_id小于view->up_limit_id,可以直接判断page的所有记录对于当前view是可见的,否则需要回clustered索引进行判断。

如果记录对于view不可见,需要通过记录的DB_ROLL_PTR指针遍历history list构造当前view可见版本数据。

回滚段

InnoDB也是采用回滚段的方式构建old version记录,这跟Oracle方式类似。

记录的DB_ROLL_PTR指向最近一次更新所创建的回滚段;每条undo log也会指向更早版本的undo log,从而形成一条更新链。通过这个更新链,不同事务可以找到其对应版本的undo log,组成old version记录,这条链就是记录的history list。

分配rollback segment

MySQL 5.6对于没有显示指定READ ONLY事务,默认为是读写事务。在事务开启时刻分配trx_id和回滚段,并把当前事务加到trx_sys的读写事务数组中。

5.7版本对于所有事务默认为只读事务,遇到第一个写操作时,只读事务切换成读写事务分配trx_id和回滚段,并把当前事务加到trx_sys的读写事务数组中。

分配回滚段的工作在函数trx_assign_rseg_low进行,分配策略是采用round-robin方式。

从5.6开始支持独立的undo表空间,InnoDB支持128个undo回滚段,请参照第1篇文章。

  • rseg0:预留在系统表空间ibdata中
  • rseg1~rseg32:这32个回滚段存放于临时表的系统表空间中
  • rseg33~rseg127:根据配置存放到独立undo表空间中(如果没有打开独立Undo表空间,则存放于ibdata中)

trx_assign_rseg_low判断,如果支持独立的undo表空间,在undo表空间有可用回滚段的情况下避免使用系统表空间的回滚段。

rseg->skip_allocation为TRUE表示rseg所在的表空间要被truncate,应该避免使用此rseg分配回滚段。此种情况,必须保证有至少2个活跃的undo表空间,并且至少2个活跃的undo slot。

分配成功时,递增rseg->trx_ref_count,保证rseg的表空间不会被truncate。

临时表操作不记redo log,最终调用get_next_noredo_rseg函数进行分配;其他情况调用get_next_redo_rseg。

回滚段实际上是undo文件组织方式,每个回滚段维护了一个段头页(segment header),该page划分了1024个slot(TRX_RSEG_N_SLOTS),每个slot对应到一个undo log对象。

理论上,InnoDB最多支持 96 (128 - 32 /* temp-tablespace */) * 1024个普通事务。

但如果是临时表的事务,可能还需要多分配1个slot(临时表的系统表空间)。

  • 只读阶段为临时表分配的,在临时表的系统表空间中分配
  • 读写阶段在undo表空间分配

分配undo log

Insert数据只对当前事务或者提交之后可见,所以insert的undo log在事务commit后就可以释放了。

Update/delete的undo记录通常用来维护old version记录,为查询提供服务;只有当trx_sys中没有任何view需要访问那个old version的数据时才可以被释放。

InnoDB对insert和update/delete分配不同的undo slot

  • insert的undo slot记在trx->rsegs.m_redo.insert_undo,调用trx_undo_assign_undo分配
  • update的undo slot记在trx->rsegs.m_redo.undate_undo,调用trx_undo_assign_undo分配

trx_undo_assign_undo

I. 检查cached队列是否有缓存的undo log(内存中数据结构是trx_undo_t)

  • 如果存在,把这个undo log从cached队列移除
  • reuse的逻辑:

    a.insert undo:重新初始化undo page的header信息(trx_undo_insert_header_reuse),并在redo log记一条MLOG_UNDO_HDR_REUSE日志

    b.update undo:在undo page的header上分配新的undo header(trx_undo_header_create),并在redo log记一条MLOG_UNDO_HDR_CREATE日志

  • 预留xid空间
  • 重新初始化undo(trx_undo_mem_init_for_reuse)把undo->state设置为TRX_UNDO_ACTIVE,并把undo->state写入到第一个undo page的TRX_UNDO_SEG_HDR+TRX_UNDO_STATE位置上

注1:TRX_UNDO_SEG_HDR表示segment header起始offset 注2:undo segment与事务trx是一一对应关系,undo segment header的状态(TRX_UNDO_STATE)跟事务当前状态也是一一对应的

如下图(引自第1篇文章)

图片.png

undo segment是个独立的段,每个undo segment包含1个header page(第1个undo page)和若干个记录undo日志的undo page。

第1个undo page中存储的是元信息: 首先存储的是undo page的元信息,位于TRX_UNDO_PAGE_HDR到TRX_UNDO_SEG_HDR之间。

TRX_UNDO_PAGE_START:指向page中第一个undo log TRX_UNDO_PAGE_FREE:指向page中下一个undo log要写到的位置 TRX_UNDO_PAGE_NODE:undo segment所有page组成一个双向链表,每个page的TRX_UNDO_PAGE_NODE字段作为连接件,第一个undo page中的TRX_UNDO_PAGE_LIST作为表头


/* undo page header */
#define TRX_UNDO_PAGE_HDR   FSEG_PAGE_DATA
#define TRX_UNDO_PAGE_TYPE  0   /*!< TRX_UNDO_INSERT or
                    TRX_UNDO_UPDATE */
#define TRX_UNDO_PAGE_START 2   /*!< Byte offset where the undo log
                    records for the LATEST transaction
                    start on this page (remember that
                    in an update undo log, the first page
                    can contain several undo logs) */
#define TRX_UNDO_PAGE_FREE  4   /*!< On each page of the undo log this
                    field contains the byte offset of the
                    first free byte on the page */
#define TRX_UNDO_PAGE_NODE  6   /*!< The file list node in the chain
                    of undo log pages */

/*-------------------------------------------------------------*/
#define TRX_UNDO_PAGE_HDR_SIZE  (6 + FLST_NODE_SIZE)
                    /*!< Size of the transaction undo
                    log page header, in bytes */

之后是undo segment的元信息,位于TRX_UNDO_SEG_HDR到TRX_UNDO_SEG_HDR+TRX_UNDO_SEG_HDR_SIZE

TRX_UNDO_STATE:表示undo segment的状态,一个undo segment可以包含多个undo log,但至多只有1个active undo log,也就是最近的undo log TRX_UNDO_LAST_LOG:指向最近的undo log的header信息 TRX_UNDO_FSEG_HEADER:存储的是undo segment对应的file segment信息,在fseg_create_general中设置(4字节space id,4字节的page no,2字节的page offset)

undo segment从buffer pool移除被persist到磁盘时,就写到file segment指定的位置上


#define TRX_UNDO_SEG_HDR    (TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_HDR_SIZE)
#define TRX_UNDO_STATE      0   /*!< TRX_UNDO_ACTIVE, ... */
#define TRX_UNDO_LAST_LOG   2   /*!< Offset of the last undo log header
                    on the segment header page, 0 if
                    none */
#define TRX_UNDO_FSEG_HEADER    4   /*!< Header for the file segment which
                    the undo log segment occupies */
#define TRX_UNDO_PAGE_LIST  (4 + FSEG_HEADER_SIZE)
                    /*!< Base node for the list of pages in
                    the undo log segment; defined only on
                    the undo log segment's first page */

/*-------------------------------------------------------------*/
/** Size of the undo log segment header */
#define TRX_UNDO_SEG_HDR_SIZE   (4 + FSEG_HEADER_SIZE + FLST_BASE_NODE_SIZE)

再之后是undo log header信息,所有的undo log header都存储在第一个undo page上。

II. 从cached队列分配undo失败时,需要真正分配一个undo segment(trx_undo_seg_create)

首先要从rseg分配一个slot(trx_rsegf_undo_find_free),每个rseg至多支持1024个slot。找到空slot返回index。

如果当前rseg已满,trx_undo_seg_create返回DB_TOO_MANY_CONCURRENT_TRXS向上层报错,表示并发事务太多无法创建undo segment。

然后在rseg对应的table space创建一个新的file segment,file segment信息记在segment header的TRX_UNDO_FSEG_HEADER(fseg_create_general)。

trx_undo_seg_create在创建file segment之后,把新创建segment的page no写到rseg对应slot上建立映射关系,并返回新创建segment的page。

file segment与undo segment的映射关系,还有rseg[slot]与file segment对应page的映射关系都是在trx_undo_seg_create绑定的。cached undo不会更新这两个映射关系。

III. trx_undo_seg_create返回的page上创建新的undo header;上层负责初始化trx_undo_t数据结构

trx_undo_create为新创建的undo header创建内存数据结构trx_undo_t(trx_undo_mem_create),把undo->state设置为TRX_UNDO_ACTIVE。

IV. 分配好的trx_undo_t会加入到事务的insert_undo_list或者update_undo_list队列上

写入undo log

trx_undo_assign_undo分配undo之后,就可往其中写入undo记录。写入的page来自undo->last_page_no,初始情况下等于hdr_page_no。

update undo包含一个重要的部分:记录的当前回滚段指针要写到undo log里面,以便维护记录的历史数据链。

read view需要读老版本数据时,会通过记录中当前的回滚段指针开始向前找到可见版本的数据。

完成Undo log写入后,构建新的回滚段指针并返回(trx_undo_build_roll_ptr),这个指针也就是clustered索引记录的DB_ROLL_PTR。

回滚段指针包括rseg->id、日志所在的page no、以及page内偏移量,需要记录到clustered索引记录中。这里rseg->id用来确定rseg->space,真正用于定位undo log位置的其实是<rseg->space, undo->page,undo->page_offset>三元组。

事务prepare

设置undo->state为TRX_UNDO_PREPARED,并把这个状态写到第一个undo page的(TRX_UNDO_SEG_HDR+TRX_UNDO_STATE)位置上。

除此之外,prepare阶段还要更新xid信息。

事务commit

在事务commit阶段,需要把undo->state设置为完成状态,并把undo加到undo segment的history list。正在提交的undo header被指向history list的第一项,表示当前事务history list最近的undo。

undo->state完成状态包括3种,在trx_undo_set_state_at_finish设置

  • undo只占一个page,而且第一个undo page已使用的空间小于3/4 (TRX_UNDO_PAGE_REUSE_LIMIT):状态设置为TRX_UNDO_CACHED
  • 不满足1的情况下,如果是insert_undo(TRX_UNDO_INSERT):状态设置为TRX_UNDO_TO_FREE
  • 不满足1和2的情况下,状态设置为TRX_UNDO_TO_PURGE,表示undo可能需要purge线程清理

cached undo会被到cached队列上,这个队列就是trx_undo_assign_undo提到的cached队列

设置完undo->state之后,需要把这个状态写入到第一个undo page的(TRX_UNDO_SEG_HDR+TRX_UNDO_STATE)位置上

把undo加到undo segment header的history list

Insert的old version没有实际意义,所以insert undo在事务commit时就可以释放了。

trx_undo_set_state_at_finish里面有cached策略,如果只占1个undo page,并且undo page已使用的空间不足pagesize的3/4可以被reuse,其实大部分insert undo都属于这种情况。

Update undo需要维护history list。这里先提一下trx->no,它维护了事务trx commit顺序,跟事务的trx_id一样,也是使用max_trx_id递增产生。

另外,purge_sys(purge的全局数据结构)维护个最小堆,每个rollback segment第1次事务提交时向最小堆插入数据,旨在找到trx_no最小的rollback segment进行purge。后面每次处理完1个rseg后,会把下一个undo记录的trx_no压入到这个最小堆,作为rseg的cursor。

事务commit时按照trx->no顺序,把事务当前的undo log挂到undo segment history list的表头,指向事务最近的undo log。

History list里的undo都是已提交事务的,当前事务所修改的undo log都记录在这里,按照从新->老方式排列,最老的undo log在尾部。

undo加入到history list的方式是:以undo log的TRX_UNDO_HISTORY_NODE作为连接件,加入到第一个undo page的TRX_RSEG_HISTORY。

一般来说,每次调用trx_purge_add_update_undo_to_history都会把undo加入到history list,只有在undo page无法被reuse时才更新history list大小(可以认为是个优化,最后一次更新history length)。

在此之后,trx_purge_add_update_undo_to_history会把undo log header的TRX_UNDO_TRX_NO更新为trx_no。

如果undo->del_marks是FALSE,这个函数也会更新TRX_UNDO_DEL_MARKS(undo segment创建或者reuse被初始化为TRUE),澄清这不是delete marker。

如果undo segment自创建以来(也可能是上次purge完成之后)中第1个事务commit,还需要更新purge有关的一些参数,指向下次purge从哪里开始执行。

老版本数据purge

旧版本数据不再被任何view访问就可以被删除了。5.6以上版本支持独立purge线程,用户可以通过参数Innodb_purge_threads设置purge线程个数。

有两类purge线程:

  • coordinator thread:srv_purge_coordinator_thread,全局只有1个
  • worker thread:srv_worker_thread,系统有innodb_purge_threads - 1个

coordinator thread负责启动worker thread参与到purge工作中。

增加purge线程的策略是:trx_sys->rseg_history_len比上次循环变大了或者rseg_history_len超过某一阈值,需要引进更多的worker thread。

减少purge线程的策略是:如果之前使用多个purge 线程,trx_sys->rseg_history_len并没有变大,可能需要减少worker thread。

在进行purge之前,首先要确定purge线程要做哪些工作,也就是说哪些undo log可以被purged。

purge也是通过read view来确定工作范围,被称为purge view。如果系统有活跃read view,就选取最老的read view作为purge view。

如果不存在就给trx_sys的状态打个snapshot,作为purge view,可以被purge的undo log其trx_no一定是小于系统中所有已提交事务的trx->no。

这里插一句,在事务commit时,会把产生的trx->no加入到trx_sys->serialisation_list链表,这个链表是按照trx->no升序次序排列,也就是维护了trx commit顺序。

InnoDB初始化的时候会初始化purge_sys数据结构,其中一个工作就是创建purge graph。

这是总共3层结构的图:

  • 第1层是fork节点
  • 第2次是thrd节点(表示purge thread)
  • 第3层是node节点(表示purge task)

所有的thrd节点被链入到fork->thrs链表中;fork地址存储在purge_sys->query,可以通过purge_sys直接访问。

执行purge的时候总是遍历purge_sys->query->thrs链表,给每个purge线程分配purge任务(trx_purge_attach_undo_recs)。

解析undo log的调用路径如下:


srv_purge_coordinator_thread -> srv_do_purge -> trx_purge ->
        trx_purge_attach_undo_recs -> trx_purge_fetch_next_rec -> 
               trx_purge_get_next_rec

purge_sys->next_stored为FALSE时,表示rseg_iter当前指向的rseg无效,需要把rseg_iter移到下一个有效的rseg(TrxUndoRsegsIterator::set_next)。

purge_sys->purge_queue维护了一个最小堆,每次pop最顶元素,可以得到trx_no最小的rollback segment(TrxUndoRsegsIterator::set_next)。

5.7支持临时表的noredo的rollback segment,set_next遇到redo rollback segment和noredo rollback segment同时存在的情况会一股脑把这两个rollback segment都pop出来加入到 purge_sys->rseg_iter->m_trx_undo_rsegs数组中,也在TrxUndoRsegsIterator::set_next实现。

如果没有rollback segment需要purge话,purge_sys->rseg设置为NULL,purge线程会去睡眠(trx_purge_choose_next_log)。

一般情况下都是有rollback segment需要处理的,purge_sys->rseg更新成purge_sys->rseg_iter->m_trx_undo_rsegs的第1项(至多2项)。

purge_sys中的相应成员也要更新,指向当前rseg上次purge到的位置(TrxUndoRsegsIterator::set_next)。

update undo的del_marks域正常情况下都是TRUE,因为update/delete操作都需要对old value进行标记删除。

如果purge_sys->rseg->last_del_marks是FALSE的话,表示这是一个dummy的undo log,不需要做物理删除。这种情况下,把purge_sys->offset设置成0,做个标记表示这个undo log不需要被purged(trx_purge_read_undo_rec)。

正常情况下purge_sys->rseg->last_del_marks是TRUE,可以通过<purge_sys->rseg->space, purge_sys->hdr_page_no, purge_sys->hdr_offset>读取undo log记录(trx_purge_read_undo_rec)。

并把purge_sys以下四个域设置成undo log记录相应的信息(trx_purge_read_undo_rec)。

    purge_sys->offset = offset; /* undo log记录的offset */
    purge_sys->page_no = page_no; /* undo log记录的pageno */
    purge_sys->iter.undo_no = undo_no; /* undo log记录的undo_no,trx内部undo的序列号 */
    purge_sys->iter.undo_rseg_space = undo_rseg_space; /* undo log的tablespace */

为了保证purge_sys以上4个域一定是指向下一个有效undo log,每次读取undo log时都会捎带着读取下一个undo log,并把上面这四个域更新为下一个undo log的信息,方面后续访问(trx_purge_get_next_rec)。

如果是dummy undo,trx_purge_get_next_rec会去读prev_undo(trx_purge_rseg_get_next_history_log),用prev_log信息更新rseg中下一个purge信息。

在此之后,还会把rseg->last_trx_no压入最小堆,待后面继续处理这个rseg。 然后调用trx_purge_choose_next_log选择下一个处理的rseg,并读取第一个undo log(trx_purge_get_next_rec)。

就这样挨个读取undo log,trx_purge_attach_undo_recs中有一个大循环,每次调用trx_purge_fetch_next_rec读到一个undo log后,把它存放到purge节点(purge graph的第三级节点) node->undo_recs数组里面,循环下一次执行切换到下一个thr(purge 线程)。

循环的结束条件是:

  • 没有新的undo log
  • 处理过的undo log达到batch size(一般是300)

达到循环结束条件后,trx_purge_attach_undo_recs返回。如果n_purge_threads > 1 (需要worker线程参与purge),coordinator线程会以round-robin方式启动n_purge_threads - 1个worker线程。

不管有没有worker线程参与purge,coordinator线程都会调用que_run_threads(在trx_purge上下文)去处理purge任务。

purge任务如何处理呢?通俗的说purge就是删除被标记delete marker的记录项。

大致过程如下:


srv_purge_coordinator_thread -> srv_do_purge -> trx_purge ->
        que_run_threads -> que_run_threads_low -> que_thr_step
               row_purge_step -> row_purge -> row_purge_record ->
                       row_purge_del_mark -> row_purge_remove_sec_if_poss

一般删除的原则是先删除二级索引再删除clustered索引(row_purge_del_mark)。

另一种情况是聚集索引in-place更新了,但二级索引上的记录顺序可能发生变化,而二级索引的更新总是标记删除 + 插入,因此需要根据回滚段记录去检查二级索引记录序是否发生变化,并执行清理操作(row_purge_upd_exist_or_extern)。

前面提到过在parse undo log时,可能遇到dummy undo log。返回到row_purge执行时需要判读是否是dummy undo,如果是就什么也不做。

truncate undo space

trx_purge在处理完一个batch(通常是300)之后,调用trx_purge_truncate_historypurge_sys对每一个rseg尝试释放undo log(trx_purge_truncate_rseg_history)。

大致过程是:把每个purge过的undo log从history list移除,如果undo segment中所有的undo log都被释放,可以尝试释放undo segment,这里隐式释放file segment到达释放存储空间的目的。

由于篇幅有限,这部分就不深入介绍了。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
SQL 监控 关系型数据库
MySQL怎么全局把一张表的数据回滚
MySQL怎么全局把一张表的数据回滚
96 2
|
1月前
|
SQL 关系型数据库 MySQL
MySQL死锁及源码分析!
MySQL死锁及源码分析!
MySQL死锁及源码分析!
|
3月前
|
SQL 关系型数据库 MySQL
【MySQL】根据binlog日志获取回滚sql的一个开发思路
【MySQL】根据binlog日志获取回滚sql的一个开发思路
|
12天前
|
SQL 关系型数据库 MySQL
mysql数据误删后的数据回滚
【11月更文挑战第1天】本文介绍了四种恢复误删数据的方法:1. 使用事务回滚,通过 `pymysql` 库在 Python 中实现;2. 使用备份恢复,通过 `mysqldump` 命令备份和恢复数据;3. 使用二进制日志恢复,通过 `mysqlbinlog` 工具恢复特定位置的事件;4. 使用延迟复制从副本恢复,通过停止和重启从库复制来恢复数据。每种方法都有详细的步骤和示例代码。
|
1月前
|
存储 缓存 关系型数据库
详细解析MySQL中的innodb和myisam
总之,InnoDB和MyISAM各有千秋,选择合适的存储引擎应基于对应用程序特性的深入理解,以及对性能、数据完整性和可扩展性的综合考量。随着技术发展,InnoDB因其全面的功能和日益优化的性能,逐渐成为更广泛场景下的首选。然而,在特定条件下,MyISAM依然保留其独特的价值。
101 0
|
2月前
|
SQL 监控 关系型数据库
MySQL数据库中如何检查一条SQL语句是否被回滚
检查MySQL中的SQL语句是否被回滚需要综合使用日志分析、事务状态监控和事务控制语句。理解和应用这些工具和命令,可以有效地管理和验证数据库事务的执行情况,确保数据的一致性和系统的稳定性。此外,熟悉事务的ACID属性和正确设置事务隔离级别对于预防数据问题和解决事务冲突同样重要。
76 2
|
3月前
|
算法 关系型数据库 MySQL
mysql view 更新问题
【8月更文挑战第28天】mysql view 更新问题
39 3
|
3月前
|
监控 关系型数据库 MySQL
在Linux中,mysql的innodb如何定位锁问题?
在Linux中,mysql的innodb如何定位锁问题?
|
3月前
|
关系型数据库 MySQL Shell
MySQL回滚脚本: 误操作delete binlog回滚shell脚本
MySQL回滚脚本: 误操作delete binlog回滚shell脚本
|
3月前
|
关系型数据库 MySQL 数据库
MySQL回滚工具:binlog 闪回工具 MyFlash工具
MySQL回滚工具:binlog 闪回工具 MyFlash工具

相关产品

  • 云数据库 RDS MySQL 版