MySQL · 最佳实践 · 如何索引JSON字段

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
简介: 概述MySQL从5.7.8起开始支持JSON字段,这极大的丰富了MySQL的数据类型。也方便了广大开发人员。但MySQL并没有提供对JSON对象中的字段进行索引的功能,至少没有直接对其字段进行索引的方法。

概述

MySQL从5.7.8起开始支持JSON字段,这极大的丰富了MySQL的数据类型。也方便了广大开发人员。但MySQL并没有提供对JSON对象中的字段进行索引的功能,至少没有直接对其字段进行索引的方法。本文将介绍利用MySQL 5.7中的虚拟字段的功能来对JSON对象中的字段进行索引。

示例数据

我们将基于下面的JSON对象进行演示

{
    "id": 1,  
    "name": "Sally",  
    "games_played":{    
       "Battlefield": {
          "weapon": "sniper rifle",
          "rank": "Sergeant V",
          "level": 20
        },                                                                                                                          
       "Crazy Tennis": {
          "won": 4,
          "lost": 1
        },  
       "Puzzler": {
          "time": 7
        }
     }
 }

表的基本结构


CREATE TABLE `players` (  
    `id` INT UNSIGNED NOT NULL,
    `player_and_games` JSON NOT NULL,
    PRIMARY KEY (`id`)
);

如果只是基于上面的表的结构我们是无法对JSON字段中的Key进行索引的。接下来我们演示如何借助虚拟字段对其进行索引

增加虚拟字段

虚拟列语法如下

<type> [ GENERATED ALWAYS ] AS ( <expression> ) [ VIRTUAL|STORED ]
[ UNIQUE [KEY] ] [ [PRIMARY] KEY ] [ NOT NULL ] [ COMMENT <text> ]

在MySQL 5.7中,支持两种Generated Column,即Virtual Generated Column和Stored Generated Column,前者只将Generated Column保存在数据字典中(表的元数据),并不会将这一列数据持久化到磁盘上;后者会将Generated Column持久化到磁盘上,而不是每次读取的时候计算所得。很明显,后者存放了可以通过已有数据计算而得的数据,需要更多的磁盘空间,与Virtual Column相比并没有优势,因此,MySQL 5.7中,不指定Generated Column的类型,默认是Virtual Column。

如果需要Stored Generated Golumn的话,可能在Virtual Generated Column上建立索引更加合适,一般情况下,都使用Virtual Generated Column,这也是MySQL默认的方式

加完虚拟列的建表语句如下:

CREATE TABLE `players` (  
   `id` INT UNSIGNED NOT NULL,
   `player_and_games` JSON NOT NULL,
   `names_virtual` VARCHAR(20) GENERATED ALWAYS AS (`player_and_games` ->> '$.name') NOT NULL, 
   PRIMARY KEY (`id`)
);

Note: 利用操作符-» 来引用JSON字段中的KEY。在本例中字段names_virtual为虚拟字段,我把它定义成不可以为空。在实际的工作中,一定要集合具体的情况来定。因为JSON本身是一种弱结构的数据对象。也就是说的它的结构不是固定不变的。

我们插入数据

INSERT INTO `players` (`id`, `player_and_games`) VALUES (1, '{  
    "id": 1,  
    "name": "Sally",
    "games_played":{    
       "Battlefield": {
          "weapon": "sniper rifle",
          "rank": "Sergeant V",
          "level": 20
        },                                                                                                                          
       "Crazy Tennis": {
          "won": 4,
          "lost": 1
        },  
       "Puzzler": {
          "time": 7
        }
      }
   }'
);
...

查看表里的数据

SELECT * FROM `players`;

+----+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------+
| id | player_and_games                                                                                                                                                                                           | names_virtual |
+----+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------+
|  1 | {"id": 1, "name": "Sally", "games_played": {"Puzzler": {"time": 7}, "Battlefield": {"rank": "Sergeant V", "level": 20, "weapon": "sniper rifle"}, "Crazy Tennis": {"won": 4, "lost": 1}}}                  | Sally         |
|  2 | {"id": 2, "name": "Thom", "games_played": {"Puzzler": {"time": 25}, "Battlefield": {"rank": "Major General VIII", "level": 127, "weapon": "carbine"}, "Crazy Tennis": {"won": 10, "lost": 30}}}            | Thom          |
|  3 | {"id": 3, "name": "Ali", "games_played": {"Puzzler": {"time": 12}, "Battlefield": {"rank": "First Sergeant II", "level": 37, "weapon": "machine gun"}, "Crazy Tennis": {"won": 30, "lost": 21}}}           | Ali           |
|  4 | {"id": 4, "name": "Alfred", "games_played": {"Puzzler": {"time": 10}, "Battlefield": {"rank": "Chief Warrant Officer Five III", "level": 73, "weapon": "pistol"}, "Crazy Tennis": {"won": 47, "lost": 2}}} | Alfred        |
|  5 | {"id": 5, "name": "Phil", "games_played": {"Puzzler": {"time": 7}, "Battlefield": {"rank": "Lt. Colonel III", "level": 98, "weapon": "assault rifle"}, "Crazy Tennis": {"won": 130, "lost": 75}}}          | Phil          |
|  6 | {"id": 6, "name": "Henry", "games_played": {"Puzzler": {"time": 17}, "Battlefield": {"rank": "Captain II", "level": 87, "weapon": "assault rifle"}, "Crazy Tennis": {"won": 68, "lost": 149}}}             | Henry         |
+----+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+---------------+

查看表Players的字段

SHOW COLUMNS FROM `players`;

+------------------+------------------+------+-----+---------+-------------------+
| Field            | Type             | Null | Key | Default | Extra             |
+------------------+------------------+------+-----+---------+-------------------+
| id               | int(10) unsigned | NO   | PRI | NULL    |                   |
| player_and_games | json             | NO   |     | NULL    |                   |
| names_virtual    | varchar(20)      | NO   |     | NULL    | VIRTUAL GENERATED |
+------------------+------------------+------+-----+---------+-------------------+

我们看到虚拟字段names_virtual的类型是VIRTUAL GENERATED。MySQL只是在数据字典里保存该字段元数据,并没有真正的存储该字段的值。这样表的大小并没有增加。我们可以利用索引把这个字段上的值进行物理存储。

在虚拟字段上加索引

再添加索引之前,让我们先看下面查询的执行计划

EXPLAIN SELECT * FROM `players` WHERE `names_virtual` = "Sally"\G  
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: players
   partitions: NULL
         type: ALL
possible_keys: NULL  
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 6
     filtered: 16.67
        Extra: Using where

添加索引

CREATE INDEX `names_idx` ON `players`(`names_virtual`);  

再执行上面的查询语句,我们将得到不一样的执行计划

EXPLAIN SELECT * FROM `players` WHERE `names_virtual` = "Sally"\G  
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: players
   partitions: NULL
         type: ref
possible_keys: names_idx  
          key: names_idx
      key_len: 22
          ref: const
         rows: 1
     filtered: 100.00
        Extra: NULL

如我们所见,最新的执行计划走了新建的索引。

小结

本文介绍了如何在MySQL 5.7中保存JSON文档。为了高效的检索JSON中内容,我们可以利用5.7的虚拟字段来对JSON的不同的KEY来建索引。极大的提高检索的速度。

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
7月前
|
Web App开发
chrome扩展:manifest.json文件相关字段
chrome扩展:manifest.json文件相关字段
35 0
|
7月前
|
存储 JSON 算法
Json字段选取器介绍和实现
我这个工具采用很简单的语法来标识目标json的层级结构,以及每一层中你想要的字段。语法类似yaml的层级结果,用相同的缩减标识同一层,每一层的关键词是你想要的字段key,不区分大小写,为了更方便使用,也支持正则表达式。 当然这里有几个特殊规则
66 0
Json字段选取器介绍和实现
|
8月前
|
JavaScript
Angular 项目中 angular.json builder 字段的可选项介绍
Angular 项目中 angular.json builder 字段的可选项介绍
54 0
|
8月前
|
Web App开发 JSON 前端开发
SAP UI5 进阶 - JSON 模型字段里的值,显示在最终 UI5 界面上的奥秘分析试读版
SAP UI5 进阶 - JSON 模型字段里的值,显示在最终 UI5 界面上的奥秘分析试读版
33 0
|
1月前
|
JSON NoSQL MongoDB
实时计算 Flink版产品使用合集之要将收集到的 MongoDB 数据映射成 JSON 对象而非按字段分割,该怎么操作
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
存储 JSON 数据处理
从JSON数据到Pandas DataFrame:如何解析出所需字段
从JSON数据到Pandas DataFrame:如何解析出所需字段
49 1
|
3天前
|
Windows
[ app.json 文件内容错误] app.json: window.navigationBarTextStyle 字段需为 black,white【已解决】
[ app.json 文件内容错误] app.json: window.navigationBarTextStyle 字段需为 black,white【已解决】
6 1
|
1月前
|
SQL DataWorks 关系型数据库
DataWorks操作报错合集之DataWorks在同步mysql时报错Code:[Framework-02],mysql里面有个json类型字段,是什么原因导致的
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
48 0
|
1月前
|
分布式计算 DataWorks 关系型数据库
DataWorks产品使用合集之在DataWorks中,使用JSON解析函数将MySQL表中的字段解析成多个字段将这些字段写入到ODPS(MaxCompute)中如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
55 3
|
1月前
|
存储 JSON DataWorks
DataWorks产品使用合集之DataWorks将 MongoDB 中的数组类型写入到 DataWorks 的单个字段时,表示为字符串格式而非 JSON 格式如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
31 3

相关产品

  • 云数据库 RDS MySQL 版
  • 推荐镜像

    更多