适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了。 我们约定有向加权图G不存在负权回路,即最短路径一定存在。当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重 点。
算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的 结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在 当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止
期望的时间复杂度O(ke), 其中k为所有顶点进队的平均次数,可以证明k一般小于等于2。
实现方法:
建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该点到他本身的路径赋为 0)。然后执行松弛操作,用队列里有的点作为起始点去刷新到所有点的最短路,如果刷新成功且被刷新点不在队列中则把该点加入到队列最后。重复执行直到队列 为空。
判断有无负环:
如果某个点进入队列的次数超过N次则存在负环(SPFA无法处理带负环的图)
首先建立起始点a到其余各点的
最短路径表格
首先源点a入队,当队列非空时:
1、队首元素(a)出队,对以a为起始点的所有边的终点依次进行松弛操作(此处有b,c,d三个点),此时路径表格状态为:
在松弛时三个点的最短路径估值变小了,而这些点队列中都没有出现,这些点
需要入队,此时,队列中新入队了三个结点b,c,d
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e点),此时路径表格状态为:
在最短路径表中,e的最短路径估值也变小了,e在队列中不存在,因此e也要
入队,此时队列中的元素为c,d,e
队首元素c点出队,对以c为起始点的所有边的终点依次进行松弛操作(此处有e,f两个点),此时路径表格状态为:
在最短路径表中,e,f的最短路径估值变小了,e在队列中存在,f不存在。因此
e不用入队了,f要入队,此时队列中的元素为d,e,f
队首元素d点出队,对以d为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:
在最短路径表中,g的最短路径估值没有变小(松弛不成功),没有新结点入队,队列中元素为f,g
队首元素f点出队,对以f为起始点的所有边的终点依次进行松弛操作(此处有d,e,g三个点),此时路径表格状态为:
在最短路径表中,e,g的最短路径估值又变小,队列中无e点,e入队,队列中存在g这个点,g不用入队,此时队列中元素为g,e
队首元素g点出队,对以g为起始点的所有边的终点依次进行松弛操作(此处只有b点),此时路径表格状态为:
在最短路径表中,b的最短路径估值又变小,队列中无b点,b入队,此时队列中元素为e,b
队首元素e点出队,对以e为起始点的所有边的终点依次进行松弛操作(此处只有g这个点),此时路径表格状态为:
在最短路径表中,g的最短路径估值没变化(松弛不成功),此时队列中元素为b
队首元素b点出队,对以b为起始点的所有边的终点依次进行松弛操作(此处只有e这个点),此时路径表格状态为:
在最短路径表中,e的最短路径估值没变化(松弛不成功),此时队列为空了
最终a到g的最短路径为14
java代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
package spfa负权路径;
import java.awt.List;
import java.util.ArrayList;
import java.util.Scanner;
public class SPFA {
/**
* @param args
*/
public long[] result; //用于得到第s个顶点到其它顶点之间的最短距离
//数组实现邻接表存储
class edge{
public int a;//边的起点
public int b;//边的终点
public int value;//边的值
public edge(int a,int b,int value){
this.a=a;
this.b=b;
this.value=value;
}
}
public static void main(String[] args) {
// TODO Auto-generated method stub
SPFA spafa=new SPFA();
Scanner scan=new Scanner(System.in);
int n=scan.nextInt();
int s=scan.nextInt();
int p=scan.nextInt();
edge[] A=new edge[p];
for(int i=0;i<p;i++){
int a=scan.nextInt();
int b=scan.nextInt();
int value=scan.nextInt();
A[i]=spafa.new edge(a,b,value);
}
if(spafa.getShortestPaths(n,s,A)){
for(int i=0;i<spafa.result.length;i++){
System.out.println(spafa.result[i]+" ");
}
}else{
System.out.println("存在负环");
}
}
/*
* 参数n:给定图的顶点个数
* 参数s:求取第s个顶点到其它所有顶点之间的最短距离
* 参数edge:给定图的具体边
* 函数功能:如果给定图不含负权回路,则可以得到最终结果,如果含有负权回路,则不能得到最终结果
*/
private boolean getShortestPaths(int n, int s, edge[] A) {
// TODO Auto-generated method stub
ArrayList<Integer> list = new ArrayList<Integer>();
result=new long[n];
boolean used[]=new boolean[n];
int num[]=new int[n];
for(int i=0;i<n;i++){
result[i]=Integer.MAX_VALUE;
used[i]=false;
}
result[s]=0;//第s个顶点到自身距离为0
used[s]=true;//表示第s个顶点进入数组队
num[s]=1;//表示第s个顶点已被遍历一次
list.add(s); //第s个顶点入队
while(list.size()!=0){
int a=list.get(0);//获取数组队中第一个元素
list.remove(0);//删除数组队中第一个元素
for(int i=0;i<A.length;i++){
//当list数组队的第一个元素等于边A[i]的起点时
if(a==A[i].a&&result[A[i].b]>(result[A[i].a]+A[i].value)){
result[A[i].b]=result[A[i].a]+A[i].value;
if(!used[A[i].b]){
list.add(A[i].b);
num[A[i].b]++;
if(num[A[i].b]>n){
return false;
}
used[A[i].b]=true;//表示边A[i]的终点b已进入数组队
}
}
}
used[a]=false; //顶点a出数组对
}
return true;
}
}
|
本文转自帅气的头头博客51CTO博客,原文链接http://blog.51cto.com/12902932/1949427如需转载请自行联系原作者
sshpp