百度数据挖掘工程师实习生笔试面试题

简介: 笔试题: 一、简答题30分 1. extern”C”{}的作用好应用场景; 2.写出两者你熟悉的设计模式,及应用场景,可以给出伪代码; 3.TCP中time_wait是表示那种状态,及应用场景,以及起好处和坏处; 二、算法题40分 1. 有一个任务执行机,任务数N<1000,该机器每次只能执行一个任务,而任务之间存在依赖关系, 但是任务之间没有循环依赖,请给出适

笔试题:
一、简答题30分
1. extern”C”{}的作用好应用场景;
2.写出两者你熟悉的设计模式,及应用场景,可以给出伪代码;
3.TCP中time_wait是表示那种状态,及应用场景,以及起好处和坏处;

二、算法题40分
1. 有一个任务执行机,任务数N<1000,该机器每次只能执行一个任务,而任务之间存在依赖关系,
但是任务之间没有循环依赖,请给出适当的任务执行顺序。算法、伪代码,并分析其时间复杂度和
空间复杂度。

2. 编写函数,统计在某段英文文本中完整句子的数目,文本中只包括大小写字母,空格,点好(.),逗号(,)。
完整的句子必须包含至少一个字母并以点号,结束。
要求:完整的代码,达到目标;高效;简洁;

三、系统架构30分
有一个监控系统,有大量的数据记录包括{url,用户访问ip,时间},要对这个监控系统进行维护,并提供查询。
设计一个能存储和维护1000亿条记录,实时监控,并支持一下两种查询:
1. 指定任意一个时间段(精确到分钟)和某个url,查处这个时间段内的所有url的访问总量。
2. 指定任意一个时间段(精确到分钟)和某个ip,查询这个时间段内的ip访问总量。

面试一
1.自我介绍;结合自己的简历简单地介绍一下。
2.项目介绍;结合自己做主要的项目,以及带的项目介绍资料,互动式地讲解;面试官关系的是机器学习相关的问题。
3.算法题;二叉树的非递归实现前序遍历;
4. 算法设计题;如何去掉重复页面;

面试二
1. 自我介绍;(同上)
2. 项目介绍;(同上)
3. 算法题;(略)问到了一个TTest;
4. 算法设计题;如何对Query进行分类;

面试三
1. 自我介绍;
2. 项目介绍;
3. 算法题两道;
1>一串首尾相连的珠子(m个),有N种颜色(N《=10),设计一个算法,取出其中一段,要求包含所有N中颜色,并使长度最短。并分析时间复杂度与空间复杂度。
2>从1到1亿,所有出现的数字的和(125=1+2+5),手工计算机出来;

我的感受:
1. 是对这次实习招聘,并无准备,笔试能通过已经很意外了;
2. 自己的算法题的解答能力有待提高,面试的时候遇到的题目其实都很常见,估计在网上多看看就都能答得很好了;
3. 百度笔试+三面的流程,大致和网上讲的差不多,前二次面试是类似的,三面可能是补充,并且往往会问道一些你职业规划上的一些问题;



目录
相关文章
|
5月前
|
机器学习/深度学习 人工智能 搜索推荐
【数据挖掘】2022年深信服科技机器学习工程师笔试
总结了深信服科技机器学习工程师笔试中的几道题目及其解答,涉及数据结构、机器学习评估指标和过拟合缓解方法等内容。
99 1
|
5月前
|
机器学习/深度学习 数据挖掘 数据安全/隐私保护
【数据挖掘工程师-笔试】2022年海尔公司
本文是关于2022年海尔公司数据挖掘工程师岗位的笔试题目分享,包括18个逻辑选择题和2个初级编程题。选择题覆盖了数学规律、字母顺序、单词排序、数列规律和加密方法等;编程题包括计算数字中奇数位之和,以及判断信号发送和接收字符串是否一致并输出错误字符的函数。文章还提供了部分题目的解析和编程题的代码示例。
69 0
|
2月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
116 2
|
3月前
|
算法 前端开发 Java
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
这篇文章总结了单链表的常见面试题,并提供了详细的问题分析、思路分析以及Java代码实现,包括求单链表中有效节点的个数、查找单链表中的倒数第k个节点、单链表的反转以及从尾到头打印单链表等题目。
41 1
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
|
5月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】百度机器学习-数据挖掘-自然语言处理工程师 历史笔试详解
文章汇总并解析了百度机器学习/数据挖掘工程师/自然语言处理工程师历史笔试题目,覆盖了多分类任务激活函数、TCP首部确认号字段、GMM-HMM模型、朴素贝叶斯模型、SGD随机梯度下降法、随机森林算法、强连通图、红黑树和完全二叉树的高度、最长公共前后缀、冒泡排序比较次数、C4.5属性划分标准、语言模型类型、分词算法、贝叶斯决策理论、样本信息熵、数据降维方法、分箱方法、物理地址计算、分时系统响应时间分析、小顶堆删除调整等多个知识点。
51 1
【数据挖掘】百度机器学习-数据挖掘-自然语言处理工程师 历史笔试详解
|
5月前
|
网络协议 网络架构
OSPF邻居关系建立失败?揭秘网络工程师面试中最常见的难题,这些关键步骤你掌握了吗?网络配置的陷阱就在这里!
【8月更文挑战第19天】OSPF是网络工程中确保数据高效传输的关键协议。但常遇难题:路由器间无法建立OSPF邻居关系,影响网络稳定并成为面试热点。解决此问题需检查网络连通性(如使用`ping`),确认OSPF区域配置一致(通过`show running-config`),校准Hello与Dead计时器(配置`hello`和`dead`命令),及核查IP地址和子网掩码正确无误(使用`ip address`)。系统排查上述因素可确保OSPF稳定运行。
97 2
|
5月前
|
运维 Kubernetes 关系型数据库
云计算运维工程师面试技巧
【8月更文挑战第6天】
464 1
|
5月前
|
存储 机器学习/深度学习 缓存
【数据挖掘】XGBoost面试题:与GBDT的区别?为什么使用泰勒二阶展开?为什么可以并行训练?为什么快?防止过拟合的方法?如何处理缺失值?
XGBoost与GBDT的区别、XGBoost使用泰勒二阶展开的原因、并行训练的原理、速度优势、防止过拟合的策略以及处理缺失值的方法,突出了XGBoost在提升模型性能和训练效率方面的一系列优化。
202 1
|
5月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】 GBDT面试题:其中基分类器CART回归树,节点的分裂标准是什么?与RF的区别?与XGB的区别?
文章讨论了梯度提升决策树(GBDT)中的基分类器CART回归树的节点分裂标准,并比较了GBDT与随机森林(RF)和XGBoost(XGB)的区别,包括集成学习方式、偏差-方差权衡、样本使用、并行性、最终结果融合、数据敏感性以及泛化能力等方面的不同。
64 1
|
5月前
|
机器学习/深度学习 自然语言处理 算法
【数据挖掘】百度机器学习-数据挖掘-自然语言处理工程师 2023届校招笔试详解
百度2023届校招机器学习/数据挖掘/自然语言处理工程师笔试的题目详解
91 1

热门文章

最新文章