sql问题分析

简介:

看了监控图看到在指定的时间内不稳定

awk  '/15:30:00/,/16:30:00/ {print $0}' slow.log >slow.txt 筛选时间段记录


sed -n '/# Time: 130418 21:28:01/,/hcy/p' slow.log > slow.txt
/usr/local/mysql/bin/mysqldumpslow -s t -t 10 slow.txt
再针对相应的sql进行分析

本文转自 liang3391 51CTO博客,原文链接:http://blog.51cto.com/liang3391/1181423
相关文章
|
7月前
|
SQL 索引
19. 一个SQL语句执行很慢, 如何分析
该内容介绍了如何分析执行慢的SQL语句。首先启用慢查询日志或使用命令获取慢查询的SQL。然后利用`EXPLAIN`命令分析,关注其中的`select_type`, `type`, 和 `extra`字段。`select_type`涉及子查询和联合查询的类型,`type`表示查询优化器使用的访问类型,性能从上到下递减,`extra`字段提供额外信息,如是否使用索引等。
60 0
|
2月前
|
SQL 存储 数据可视化
手机短信SQL分析技巧与方法
在手机短信应用中,SQL分析扮演着至关重要的角色
|
7月前
|
SQL 数据可视化 算法
SQL Server聚类数据挖掘信用卡客户可视化分析
SQL Server聚类数据挖掘信用卡客户可视化分析
|
4月前
|
前端开发 Java JSON
Struts 2携手AngularJS与React:探索企业级后端与现代前端框架的完美融合之道
【8月更文挑战第31天】随着Web应用复杂性的提升,前端技术日新月异。AngularJS和React作为主流前端框架,凭借强大的数据绑定和组件化能力,显著提升了开发动态及交互式Web应用的效率。同时,Struts 2 以其出色的性能和丰富的功能,成为众多Java开发者构建企业级应用的首选后端框架。本文探讨了如何将 Struts 2 与 AngularJS 和 React 整合,以充分发挥前后端各自优势,构建更强大、灵活的 Web 应用。
65 0
|
4月前
|
SQL 数据采集 数据挖掘
为什么要使用 SQL 函数?详尽分析
【8月更文挑战第31天】
63 0
|
4月前
|
SQL 数据采集 算法
【电商数据分析利器】SQL实战项目大揭秘:手把手教你构建用户行为分析系统,从数据建模到精准营销的全方位指南!
【8月更文挑战第31天】随着电商行业的快速发展,用户行为分析的重要性日益凸显。本实战项目将指导你使用 SQL 构建电商平台用户行为分析系统,涵盖数据建模、采集、处理与分析等环节。文章详细介绍了数据库设计、测试数据插入及多种行为分析方法,如购买频次统计、商品销售排名、用户活跃时间段分析和留存率计算,帮助电商企业深入了解用户行为并优化业务策略。通过这些步骤,你将掌握利用 SQL 进行大数据分析的关键技术。
253 0
|
4月前
|
SQL 数据挖掘 BI
【超实用技巧】解锁SQL聚合函数的奥秘:从基础COUNT到高级多表分析,带你轻松玩转数据统计与挖掘的全过程!
【8月更文挑战第31天】SQL聚合函数是进行数据统计分析的强大工具,可轻松计算平均值、求和及查找极值等。本文通过具体示例,展示如何利用这些函数对`sales`表进行统计分析,包括使用`COUNT()`、`SUM()`、`AVG()`、`MIN()`、`MAX()`等函数,并结合`GROUP BY`和`HAVING`子句实现更复杂的数据挖掘需求。通过这些实践,你将学会如何高效地应用SQL聚合函数解决实际问题。
64 0
|
4月前
|
网络协议 NoSQL 网络安全
【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)
【Azure 应用服务】由Web App“无法连接数据库”而逐步分析到解析内网地址的办法(SQL和Redis开启private endpoint,只能通过内网访问,无法从公网访问的情况下)
|
5月前
|
SQL 存储 大数据
SQL中DISTINCT关键字的使用与性能影响分析
SQL中DISTINCT关键字的使用与性能影响分析
|
7月前
|
SQL HIVE UED
【Hive SQL 每日一题】分析电商平台的用户行为和订单数据
作为一名数据分析师,你需要分析电商平台的用户行为和订单数据。你有三张表:`users`(用户信息),`orders`(订单信息)和`order_items`(订单商品信息)。任务包括计算用户总订单金额和数量,按月统计订单,找出最常购买的商品,找到平均每月最高订单金额和数量的用户,以及分析高消费用户群体的年龄和性别分布。通过SQL查询,你可以实现这些分析,例如使用`GROUP BY`、`JOIN`和窗口函数来排序和排名。
406 2