深度学习与人工智能革命:part II

简介: 本文是该系列内容的第2部分内容,主要介绍人工智能、机器学习和深度学习三者的差别,着重介绍机器学习中的有监督学习和无监督学习。

首发地址:https://yq.aliyun.com/articles/405397

本篇是系列博客的第二部分,如果没有看过第一部分内容的读者建议阅读一下。

I部分内容中,主要是讲解人工智能的历史以及它现在高速发展的原因;

在今天的第II部分内容中,将讨论一下人工智能、机器学习和深度学习之间的区别;

第III部分内容中,将深入研究深度学习以及在为新项目选择数据库时需要评估的关键事项;

IV部分内容中,将讨论深度学习为何使用MongoDB,并提供相关使用实例;

由于本文内容是第II部分内容,主要介绍人工智能、机器学习和深度学习之间的区别如果读者想快速将四部分的内容全部看完,可以下载本文的附件。

人工智能、机器学习和深度学习之间的区别

在很多情况下,人工智能、机器学习和深度学习可以互换使用。但实际上,机器学习和深度学习都是人工智能的子集。人工智能作为计算机科学研究领域中的一个分支,其重点是建立能够具有智能行为的机器,而机器学习和深度学习则是利用算法筛选数据,并从数据中学习、预测或采取自主行动的实践。因此,这些算法不需要根据特定的约束进行编程,而是使用大量数据进行训练,使其能够独立学习、推理和执行特定的任务。

73103faf0e7d34e9504093ed775e5cf22a3c36e9

那么,机器学习和深度学习之间存在哪些区别呢?在定义深度学习之前(第III部分内容),先深入地理解机器学习吧。

机器学习:有监督VS.无监督

机器学习方法主要分成两大类:有监督学习和无监督学习。

有监督学习:目前,有监督学习是机器学习中最为常用的算法。在有监督学习的情况下,相关算法的输入是开发人员和分析人员手动标记的数据,即有标记的数据,这些标记就是数据的期望输出值,使用这些数据来训练模型并生成预测。监督学习任务又可以分为两大类:回归和分类问题。

75f5b4634f39860577218b9e11406647c59f3b06

上图演示了一个简单的回归问题。从图中可以看到,存在两个输入或特征(平方英尺和价格),被用于生成拟合曲线,并预测未来的房地产价格。这个模型相当简单,只考虑了房子的面积这一个特征对房价的影响,在国内的话,如果只考虑这房子面积这一个特征就去购买或投资房产的话,将会闹出笑话。因此,一般而言,考虑的特征越多,模型会越复杂,预测也会更加准确。

6e49e4079c897c9dd8f29986a5e4556b462972d5

上图演示了一个有监督分类问题。使用的数据集是有标记为良性肿瘤和恶性肿瘤的乳腺癌患者。有监督分类算法试图通过将数据拟合成直线将肿瘤划分为两种不同的类别。当算法学习好后,即划分直线确定,将来的数据可以之间通过这条划分直线来确定患者的肿瘤是良性或恶性。分类问题导致离散输出,但不一定限制固定数据集的输出数量,上图中只有两个离散输出,但可以有更多分类类别(1表示良性,2表示恶性,3表示待定等)。

无监督学习。在有监督学习的示例中,可以看到使用的数据集都具有标记(良性或恶性分类),数据标记有助于算法确定正确的答案是什么,进而调整模型参数以使得模型输出尽可能与标记相近。而在无监督学习中,数据集是不具有标记的,需要依赖于算法来发现数据中的结构和模型。

b175dd11536f7d5c405659545326c04eb5a0b12d

从上图中可以看到,每个数据点代表的信息不明确,因此要求算法在不受任何监督的情况下查找数据中存在的结构信息。图中的无监督学习算法可以确定两个不同的集群,并在集群之间进行直线分类。无监督学习广泛应用于新闻、社会网络分析、市场分割及银河系周围的天文分析等许多应用案例中。

以上是第II部分的全部内容,在第III部分内容中,将深入介绍深度学习,以及在为新项目选择数据库时需要评估的关键事项。

作者信息

Mat Keep,产品营销总监,目前就职于MongoDB团队。

个人主页:https://www.linkedin.com/in/matkeep/

本文由北邮@爱可可-爱生活老师推荐,阿里云云栖社区组织翻译。

文章原标题《Deep Learning and the Artificial Intelligence Revolution: Part 2》,作者:Mat Keep,译者:海棠,审阅:袁虎。

文章为简译,更为详细的内容,请查看原文

目录
相关文章
|
14天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
51 3
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
16天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
73 9
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与深度学习:探索未来技术的无限可能
在21世纪,人工智能(AI)和深度学习已经成为推动科技进步的重要力量。本文将深入探讨这两种技术的基本概念、发展历程以及它们如何共同塑造未来的科技景观。我们将分析人工智能的最新趋势,包括自然语言处理、计算机视觉和强化学习,并讨论这些技术在现实世界中的应用。此外,我们还将探讨深度学习的工作原理,包括神经网络、卷积神经网络(CNN)和循环神经网络(RNN),并分析这些模型如何帮助解决复杂的问题。通过本文,读者将对人工智能和深度学习有更深入的了解,并能够预见这些技术将如何继续影响我们的世界。
34 7
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
19 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
20 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
13天前
|
机器学习/深度学习 分布式计算 自动驾驶
深度学习在图像识别中的革命性应用####
【10月更文挑战第29天】 本文深入探讨了深度学习技术如何彻底革新图像识别领域,通过卷积神经网络(CNN)的架构优化、数据集增强策略及迁移学习的应用,显著提升了图像分类与目标检测的准确率。文章概述了深度学习模型训练的关键挑战,如过拟合、计算资源依赖性,并提出了创新性解决方案,包括正则化技术、分布式计算框架及自适应学习率调整策略。强调了深度学习在自动驾驶、医疗影像分析等领域的广阔应用前景,同时指出了隐私保护、模型可解释性等伦理法律问题的重要性,为未来研究提供了方向。 ####
36 5
|
14天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的革命性突破###
本文探讨了深度学习如何彻底变革图像识别技术,从传统方法的局限到深度学习的崛起,再到其在不同领域的广泛应用,揭示了这一领域内的创新性进展。 ###
|
15天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
38 2

热门文章

最新文章