在Python中对MySQL中的数据进行可视化

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:

本教程的所有Python代码可以在网上的IPython notebook中获取。


考虑在公司里使用Plotly?可以看一下Plotly的on-premises企业版。(注:On-premises是指软件运行在工作场所或公司内部,详见维基百科)

注意操作系统:尽管Windows或Mac用户也可以跟随本文操作,但本文假定你使用的是Ubuntu系统(Ubuntu桌面版或Ubuntu服务器版)。如果你没有Ubuntu Server,你可以通过Amazon的Web服务建立一个云平台(阅读这份教程的前半部分)。如果你用的是Mac,我们推荐你购买并下载VMware Fusion,在上面安装Ubuntu桌面版。你也可以通过Zareason购买一台便宜的预装Ubuntu桌面版/服务器版的笔记本或服务器。


使用Python读取MySQL的数据并绘图很简单,所有你需要的工具都可以免费下载。本文会展示怎么做。如果你遇到问题或者卡住了,可以给feedback@plot.ly发送邮件,也可以在本文下面评论,或者在tweeter上@plotlygraphs。

第1步:确保MySQL已安装且在运行

首先,你需要有一台安装了MySQL的计算机或服务器。你可以通过以下方法检查MySQL是否安装:打开控制台,输入“mysql”,如果你收到MySQL无法连接的错误,这意味着MySQL安装了,但是没有运行。在命令行或“Terminal”中,尝试输入sudo /etc/init.d/mysql start并按回车来启动MySQL。


如果MySQL没有安装,不要失望。在Ubuntu中下载并安装只需一行命令:

1
shell>  sudo  apt-get  install  mysql-server --fix-missing

安装过程中会让你输入一个密码。安装结束后,你可以在终端中键入以下命令进入MySQL控制台:

1
shell>  sudo  mysql -uroot -p

输入“exit”就可以退出MySQL控制台。


本教程使用MySQL经典的“world”样例数据库。如果你想跟随我们的步骤,可以在MySQL文档中心下载world数据库。你也可以在命令行中使用wget下载:

1
shell> wget http: //downloads .mysql.com /docs/world .sql.zip

然后解压文件:

1
shell> unzip world.sql.zip

(如果unzip没有安装,输入sudo apt-get install unzip安装)


现在需要把world数据库导入到MySQL,启动MySQL控制台:

1
shell>  sudo  mysql -uroot -p

进入控制台后,通过以下MySQL命令使用world.sql文件创建world数据库:

1
2
3
mysql>  CREATE  DATABASE  world;
mysql> USE world;
mysql> SOURCE /home/ubuntu/world.sql;

(在上面的SOURCE命令中,确保将路径改为你自己world.sql所在目录)。


上述操作说明摘自MySQL文档中心。

第2步:使用Python连接MySQL

使用Python连接MySQL很简单。关键得安装python的MySQLdb包。首先需要安装两项依赖:

1
2
shell>  sudo  apt-get  install  python-dev
shell>  sudo  apt-get  install  libmysqlclient-dev

然后安装Python的MySQLdb包:

1
shell>  sudo  pip  install  MySQL-python

现在,启动Python并导入MySQLdb。你可以在命令行或者IPython notebook中执行:

1
2
shell> python
>>>  import  MySQLdb

创建MySQL中world数据库的连接:

1
>>> conn  = MySQLdb.connect(host = "localhost" , user = "root" , passwd = "XXXX" , db = "world" )

cursor是用来创建MySQL请求的对象。

1
>>> cursor  =  conn.cursor()

我们将在Country表中执行查询。

第3步:Python中执行MySQL查询

cursor对象使用MySQL查询字符串执行查询,返回一个包含多个元组的元组——每行对应一个元组。如果你刚接触MySQL语法和命令,在线的MySQL参考手册是一个很不错的学习资源。

1
2
>>> cursor.execute( 'select Name, Continent, Population, LifeExpectancy, GNP from Country' );
>>> rows  =  cursor.fetchall()

rows,也就是查询的结果,是一个包含多个元组的元组,像下面这样: ((‘Aruba’, ‘North America’, 103000L, 78.4, 828.0), (‘Afghanistan’, ‘Asia’, 22720000L, 45.9, 5976.0), (‘Angola’, ‘Africa’, 12878000L, 38.3, 6648.0), (‘Anguilla’, ‘North America’, 8000L, 76.1, 63.2) …


其中的每个元组对应一行。绘成表格,看起来是像下面这样的:


NAME CONTINENT POPULATION LIFEEXPECTANCY GNP
237 Zambia Africa 9169000 37.2 3377
143 Mozambique Africa 19680000 37.5 2891
148 Malawi Africa 10925000 37.6 1687
238 Zimbabwe Africa 11669000 37.8 5951
2 Angola Africa 12878000 38.3 6648

使用Pandas的DataFrame来处理每一行要比使用一个包含元组的元组方便。下面的Python代码片段将所有行转化为DataFrame实例:

1
2
3
4
>>>  import  pandas as pd
>>> df  =  pd.DataFrame( [[ij  for  ij  in  i]  for  in  rows] )
>>> df.rename(columns = { 0 'Name' 1 'Continent' 2 'Population' 3 'LifeExpectancy' 4 : 'GNP' }, inplace = True );
>>> df  =  df.sort([ 'LifeExpectancy' ], ascending = [ 1 ]);


完整的代码可以参见IPython notebook

第4步:使用Plotly绘制MySQL数据

现在,MySQL的数据存放在Pandas的DataFrame中,可以轻松地绘图。下面的代码用来绘制国家GNP(国民生产总值)VS平均寿命的图,鼠标悬停的点会显示国家名称。确保你已经下载了Plotly的Python库。如果没有,你可以参考一下它的入门指南。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import  plotly.plotly as py
from  plotly.graph_objs  import  *
trace1  =  Scatter(
x = df[ 'LifeExpectancy' ],
y = df[ 'GNP' ],
text = country_names,
mode = 'markers'
)
layout  =  Layout(
xaxis = XAxis( title = 'Life Expectancy'  ),
yaxis = YAxis(  type = 'log' , title = 'GNP'  )
)
data  =  Data([trace1])
fig  =  Figure(data = data, layout = layout)
py.iplot(fig, filename = 'world GNP vs life expectancy' )

完整的代码在这份IPython notebook中。下面是作为一个iframe嵌入的结果图:

0?tp=webp&wxfrom=5

利用Plotly的Python用户指南中的气泡图教程,我们可以用相同的MySQL数据绘制一幅气泡图,气泡大小表示人口的多少,气泡的颜色代表不同的大洲,鼠标悬停会显示国家名称。下面显示的是作为一个iframe嵌入的气泡图。

0?tp=webp&wxfrom=5

创建这个图表以及这个博客中的所有python代码都可以从这个IPython notebook中拷贝。










本文转自 chengxuyonghu 51CTO博客,原文链接:http://blog.51cto.com/6226001001/1623312,如需转载请自行联系原作者
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
21天前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
1月前
|
JSON 算法 API
1688商品详情API实战:Python调用全流程与数据解析技巧
本文介绍了1688电商平台的商品详情API接口,助力电商从业者高效获取商品信息。接口可返回商品基础属性、价格体系、库存状态、图片描述及商家详情等多维度数据,支持全球化语言设置。通过Python示例代码展示了如何调用该接口,帮助用户快速上手,适用于选品分析、市场研究等场景。
|
2月前
|
数据采集 NoSQL 关系型数据库
Python爬虫去重策略:增量爬取与历史数据比对
Python爬虫去重策略:增量爬取与历史数据比对
|
29天前
|
Web App开发 数据采集 JavaScript
动态网页爬取:Python如何获取JS加载的数据?
动态网页爬取:Python如何获取JS加载的数据?
330 58
|
23天前
|
人工智能 数据可视化 Python
在Python中对数据点进行标签化
本文介绍了如何在Python中使用Matplotlib和Seaborn对数据点进行标签化,提升数据可视化的信息量与可读性。通过散点图示例,展示了添加数据点标签的具体方法。标签化在标识数据点、分类数据可视化及趋势分析中具有重要作用。文章强调了根据需求选择合适工具,并保持图表清晰美观的重要性。
48 15
|
15天前
|
数据采集 Web App开发 JavaScript
Python爬虫解析动态网页:从渲染到数据提取
Python爬虫解析动态网页:从渲染到数据提取
|
1月前
|
供应链 API 开发者
1688 商品数据接口终极指南:Python 开发者如何高效获取标题 / 价格 / 销量数据(附调试工具推荐)
1688商品列表API是阿里巴巴开放平台提供的服务,允许开发者通过API获取1688平台的商品信息(标题、价格、销量等)。适用于电商选品、比价工具、供应链管理等场景。使用时需构造请求URL,携带参数(如q、start_price、end_price等),发送HTTP请求并解析返回的JSON/XML数据。示例代码展示了如何用Python调用该API获取商品列表。
110 18
|
2月前
|
关系型数据库 MySQL Linux
在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾
以上就是在Linux环境下备份Docker中的MySQL数据并传输到其他服务器以实现数据级别的容灾的步骤。这个过程就像是一场接力赛,数据从MySQL数据库中接力棒一样传递到备份文件,再从备份文件传递到其他服务器,最后再传递回MySQL数据库。这样,即使在灾难发生时,我们也可以快速恢复数据,保证业务的正常运行。
162 28
|
1月前
|
存储 SQL 缓存
mysql数据引擎有哪些
MySQL 提供了多种存储引擎,每种引擎都有其独特的特点和适用场景。以下是一些常见的 MySQL 存储引擎及其特点:
68 0
|
2月前
|
数据采集 存储 缓存
Python爬虫与代理IP:高效抓取数据的实战指南
在数据驱动的时代,网络爬虫是获取信息的重要工具。本文详解如何用Python结合代理IP抓取数据:从基础概念(爬虫原理与代理作用)到环境搭建(核心库与代理选择),再到实战步骤(单线程、多线程及Scrapy框架应用)。同时探讨反爬策略、数据处理与存储,并强调伦理与法律边界。最后分享性能优化技巧,助您高效抓取公开数据,实现技术与伦理的平衡。
122 4

推荐镜像

更多