DC学院爬虫学习笔记(五):使用pandas保存豆瓣短评数据

简介: 使用pandas保存豆瓣短评数据

保存数据的方法:

  • open函数保存
  • pandas包保存(本节课重点讲授)
  • csv模块保存
  • numpy包保存

使用open函数保存数据

1. open函数用法

  • 使用with open()新建对象
  • 写入数据
import requests
from lxml import etree

url = 'https://book.douban.com/subject/1084336/comments/'
r = requests.get(url).text

s = etree.HTML(r)
file = s.xpath('//div[@class="comment"]/p/text()')

with open('pinglun.txt', 'w', encoding='utf-8') as f: #使用with open()新建对象f
   for i in file:
      # print(i)
       f.write(i) #写入数据,文件保存在当前工作目录
  • 可以使用以下方法得到当前工作目录或者修改当前工作目录
import os
os.getcwd()#得到当前工作目录
'C:\\Users\\Dell'
os.chdir()#修改当前工作目录,括号中传入工作目录的路径

2. open函数的打开模式

image

使用pandas保存数据

1. Python数据分析的工具包

  • numpy: (Numerical Python的简称),是高性能科学计算和数据分析的基础包
  • pandas:基于Numpy创建的Python包,含有使数据分析工作变得更加简单的高级数据结构和操作工具
  • matplotlib:是一个用于创建出版质量图表的绘图包(主要是2D方面)
  • 常见的导入方法:
import pandas as pd #导入pandas
import numpy as np #导入numpy
import matplotlib.pypolt as plt #导入matplotlib

2. pandas保存数据到Excel

  • 导入相关的库
  • 将爬取到的数据储存为DataFrame对象(DataFrame 是一个表格或者类似二维数组的结构,它的各行表示一个实例,各列表示一个变量)
  • to_excel() 实例方法:用于将DataFrame保存到Excel
df.to_excel('文件名.xlsx', sheet_name = 'Sheet1') 
#其中df为DataFrame结构的数据,sheet_name = 'Sheet1'表示将数据保存在Excel表的第一张表中
  • read_excel() 方法:从excel文件中读取数据
pd.read_excel('文件名.xlsx', 'Sheet1', index_col=None, na_values=['NA'])

3. pandas保存数据到csv文件

  • 导入相关的库
  • 将数据储存为DataFrame对象
  • 保存数据到csv文件
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(6,3)) #创建随机值并保存为DataFrame结构
print(df.head())
df.to_csv('numpppy.csv')
          0         1         2
0  0.028705 -0.351902 -0.821870
1  0.279090  0.577875 -1.283121
2  1.563792 -0.146931 -0.587794
3 -0.272610 -0.342182  0.847883
4  1.380459  0.462965 -1.799529

实战

爬取《小王子》豆瓣短评的数据,并把数据保存为本地的excel表格

import requests
from lxml import etree

url = 'https://book.douban.com/subject/1084336/comments/'
r = requests.get(url).text

s = etree.HTML(r)
file = s.xpath('//div[@class="comment"]/p/text()')

import pandas as pd
df = pd.DataFrame(file)
df.to_excel('pinglun.xlsx')

爬取《小王子》豆瓣短评前5页的短评数据

import requests
from lxml import etree
import pandas as pd

urls=['https://book.douban.com/subject/1084336/comments/hot?p={}'.format(str(i)) for i in range(1, 6, 1)] #通过观察的url翻页的规律,使用for循环得到5个链接,保存到urls列表中

pinglun = [] #初始化用于保存短评的列表
for url in urls: #使用for循环分别获取每个页面的数据,保存到pinglun列表
    r = requests.get(url).text
    s = etree.HTML(r)
    file = s.xpath('//div[@class="comment"]/p/text()')
    pinglun = pinglun + file

df = pd.DataFrame(pinglun) #把pinglun列表转换为pandas DataFrame
df.to_excel('pinglun.xlsx') #使用pandas把数据保存到excel表格
目录
相关文章
|
28天前
|
数据采集 API 数据处理
Objective-C 音频爬虫:实时接收数据的 didReceiveData: 方法
Objective-C 音频爬虫:实时接收数据的 didReceiveData: 方法
|
1月前
|
消息中间件 数据采集 数据库
小说爬虫-03 爬取章节的详细内容并保存 将章节URL推送至RabbitMQ Scrapy消费MQ 对数据进行爬取后写入SQLite
小说爬虫-03 爬取章节的详细内容并保存 将章节URL推送至RabbitMQ Scrapy消费MQ 对数据进行爬取后写入SQLite
25 1
|
1月前
|
数据采集 数据挖掘 数据处理
Python中实现简单爬虫并处理数据
【9月更文挑战第31天】本文将引导读者理解如何通过Python创建一个简单的网络爬虫,并展示如何处理爬取的数据。我们将讨论爬虫的基本原理、使用requests和BeautifulSoup库进行网页抓取的方法,以及如何使用pandas对数据进行清洗和分析。文章旨在为初学者提供一个易于理解的实践指南,帮助他们快速掌握网络数据抓取的基本技能。
57 3
|
2月前
|
数据采集 JSON 数据格式
Python:南京地铁每日客流数据的爬虫实现
Python:南京地铁每日客流数据的爬虫实现
65 1
|
1月前
|
数据采集 Web App开发 JSON
爬虫实战小案例—获取喜马拉雅账号的关注数据和粉丝数据生成电子表格并实现批量关注或者取关然后生成表格文件
爬虫实战小案例—获取喜马拉雅账号的关注数据和粉丝数据生成电子表格并实现批量关注或者取关然后生成表格文件
|
1月前
|
数据采集
爬虫案例—抓取找歌词网站的按歌词找歌名数据
爬虫案例—抓取找歌词网站的按歌词找歌名数据
|
1月前
|
数据采集 开发者
爬虫案例—抓取豆瓣电影的电影名称、评分、简介、评价人数
爬虫案例—抓取豆瓣电影的电影名称、评分、简介、评价人数
|
2月前
|
数据采集 Python
爬虫练手:某网图书畅销榜排名数据
爬虫练手:某网图书畅销榜排名数据
30 0
|
19天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
60 6
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
183 4