Python-数据爬取(爬虫)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 【7月更文挑战第24天】

1.简要描述一下Python爬虫的工作原理,并介绍几个常用的Python爬虫库。
Python爬虫的工作原理
发送请求:爬虫向目标网站发送HTTP请求,通常使用GET请求来获取网页内容。
解析响应:接收并解析HTTP响应,提取出有用的数据。常用的解析方式包括HTML解析和JSON解析。
数据提取:使用解析后的数据,根据特定的规则或结构,提取所需信息。
数据存储:将提取出的数据保存到文件、数据库或其他存储系统中。
遵守规则:爬虫需要遵守目标网站的robots.txt文件中的规则,避免对服务器造成过大压力。
常用的Python爬虫库
Requests:一个简单易用的HTTP库,用于发送请求和接收响应。
BeautifulSoup:一个用于解析HTML和XML的库,可以轻松地提取网页中的数据。
Scrapy:一个功能强大的爬虫框架,提供了许多高级功能,如请求调度、数据提取和存储。
Selenium:用于模拟浏览器操作,适合处理需要JavaScript渲染的网页。
使用selenium库爬取东方财富网站股票数据信息

示例代码和过程说明
安装Selenium库:首先确保已经安装了Selenium库和对应的浏览器驱动,例如Chrome驱动(Chrome WebDriver)。

pip install selenium
导入必要的库和设置:导入Selenium库,并设置浏览器驱动的路径和目标网页URL。

from selenium import webdriver
import time

设置 Chrome 驱动程序路径

driver_path = '/path/to/chromedriver'

目标网页 URL

url = 'http://quote.eastmoney.com/center/gridlist.html#hs_a_board'
设置浏览器选项和启动WebDriver:配置Chrome浏览器选项,启动WebDriver,并打开目标网页。

设置 Chrome 浏览器选项

options = webdriver.ChromeOptions()
options.add_argument('--headless') # 无头模式运行浏览器,即不打开实际浏览器窗口
options.add_argument('--disable-gpu')
options.add_argument('--no-sandbox')

启动 Chrome 浏览器

driver = webdriver.Chrome(executable_path=driver_path, options=options)

打开目标网页

driver.get(url)
模拟翻页和数据抓取:使用Selenium模拟点击下一页按钮,然后等待2秒钟加载下一页数据,并抓取页面中的股票数据。

try:
while True:

    # 等待页面加载完全
    time.sleep(2)

    # 爬取当前页面数据(这里假设抓取表格数据的过程)
    table = driver.find_element_by_css_selector('table.stock-table')

    # 处理表格数据,例如输出或者存储数据
    rows = table.find_elements_by_css_selector('tr')
    for row in rows:
        # 处理每一行数据,例如打印股票代码和名称
        cells = row.find_elements_by_css_selector('td')
        if len(cells) >= 2:
            stock_code = cells[0].text
            stock_name = cells[1].text
            print(f"股票代码: {stock_code}, 股票名称: {stock_name}")

    # 查找并点击下一页按钮
    next_button = driver.find_element_by_css_selector('a.next')
    next_button.click()

except Exception as e:
print(f"爬取过程出现异常: {str(e)}")

finally:

# 关闭浏览器驱动
driver.quit()

源码
from selenium import webdriver
import time

设置 Chrome 驱动程序路径

driver_path = '/path/to/chromedriver'

目标网页 URL

url = 'http://quote.eastmoney.com/center/gridlist.html#hs_a_board'

设置 Chrome 浏览器选项

options = webdriver.ChromeOptions()
options.add_argument('--headless') # 无头模式运行浏览器,即不打开实际浏览器窗口
options.add_argument('--disable-gpu')
options.add_argument('--no-sandbox')

启动 Chrome 浏览器

driver = webdriver.Chrome(executable_path=driver_path, options=options)

try:

# 打开目标网页
driver.get(url)

while True:
    # 等待页面加载完全
    time.sleep(2)

    # 爬取当前页面数据(这里假设抓取表格数据的过程)
    table = driver.find_element_by_css_selector('table.stock-table')

    # 处理表格数据,例如输出或者存储数据
    rows = table.find_elements_by_css_selector('tr')
    for row in rows:
        # 处理每一行数据,例如打印股票代码和名称
        cells = row.find_elements_by_css_selector('td')
        if len(cells) >= 2:
            stock_code = cells[0].text
            stock_name = cells[1].text
            print(f"股票代码: {stock_code}, 股票名称: {stock_name}")

    # 查找并点击下一页按钮
    next_button = driver.find_element_by_css_selector('a.next')
    next_button.click()

except Exception as e:
print(f"爬取过程出现异常: {str(e)}")

finally:

# 关闭浏览器驱动
driver.quit()

过程说明
设置浏览器选项和启动WebDriver:通过设置ChromeOptions来配置Chrome浏览器的参数,包括无头模式等,然后启动Chrome浏览器。

模拟翻页和数据抓取:使用一个while循环,不断查找并点击页面的下一页按钮(假设为CSS选择器a.next),然后等待2秒钟(使用time.sleep(2))加载下一页数据。在每一页加载完成后,使用Selenium的方法找到表格元素(假设为CSS选择器table.stock-table),然后逐行抓取并处理股票数据。

异常处理和浏览器关闭:使用try-except语句捕获可能出现的异常,并在最后通过driver.quit()关闭浏览器驱动,确保资源释放。

2.Scrapy 框架的基本结构和工作流程是怎样的?
Scrapy 框架的基本结构
项目结构:Scrapy项目包含多个文件和目录,如spiders(存放爬虫代码)、items(定义数据结构)、pipelines(处理提取的数据)、settings(项目配置)等。
Spiders:定义爬虫的核心部分,负责发送请求和解析响应。
Items:定义数据结构,用于存储爬取的数据。
Pipelines:处理提取的数据,可以进行清洗、验证和存储等操作。
Middlewares:中间件,用于处理请求和响应的过程,类似于过滤器。
Scrapy 工作流程
启动爬虫:Scrapy启动后,加载配置和爬虫类。
发送请求:爬虫类发送初始请求(通常是start_urls列表中的URL)。
解析响应:收到响应后,调用爬虫类中的解析方法(如parse),提取数据和生成新的请求。
生成新的请求:解析方法可以生成新的请求,这些请求会被放入调度器中,等待执行。
处理数据:提取到的数据会被传递到pipelines进行进一步处理,如清洗和存储。
Scrapy 示例
下面是一个简单的Scrapy爬虫示例,它爬取一个示例网站的标题和链接。

创建Scrapy项目:

scrapy startproject example
定义数据结构(example/items.py):

import scrapy

class ExampleItem(scrapy.Item):
title = scrapy.Field()
link = scrapy.Field()
创建爬虫类(example/spiders/example_spider.py):

import scrapy
from example.items import ExampleItem

class ExampleSpider(scrapy.Spider):
name = "example"
start_urls = ['http://example.com']

def parse(self, response):
    for item in response.css('div.item'):
        example_item = ExampleItem()
        example_item['title'] = item.css('a.title::text').get()
        example_item['link'] = item.css('a::attr(href)').get()
        yield example_item

配置pipelines(example/settings.py):

ITEM_PIPELINES = {
'example.pipelines.ExamplePipeline': 300,
}
定义pipelines(example/pipelines.py):

class ExamplePipeline:
def process_item(self, item, spider):

    # 这里可以进行数据清洗和存储
    print(f"Title: {item['title']}, Link: {item['link']}")
    return item

运行爬虫:

scrapy crawl example
这个爬虫会访问http://example.com,提取每个div.item中的标题和链接,并将其输出。
原文链接:https://blog.csdn.net/m0_74940474/article/details/140381034

相关文章
|
9天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
10天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
11天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
18天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
60 6
|
12天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
12天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
21 1
|
16天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
36 7
|
13天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
13天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
19天前
|
数据采集 Web App开发 前端开发
Python爬虫进阶:Selenium在动态网页抓取中的实战
【10月更文挑战第26天】动态网页抓取是网络爬虫的难点,因为数据通常通过JavaScript异步加载。Selenium通过模拟浏览器行为,可以加载和执行JavaScript,从而获取动态网页的完整内容。本文通过实战案例,介绍如何使用Selenium在Python中抓取动态网页。首先安装Selenium库和浏览器驱动,然后通过示例代码展示如何抓取英国国家美术馆的图片信息。
38 6