6、Windows驱动开发技术详解笔记(2) 基本语法回顾

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介:     1、字符串   Unicode 字符串有一个结构体定义如下: typedef struct _UNICODE_STRING { USHORT Length; // 字符串的长度(字节数) USHORT MaximumLength; // 字符串缓冲区的长度(字节数) PWSTR Buffer; // 字符串缓冲区 } UNICODE_STRING, *PUNICODE_STRING; 需要注意的是,当我们定义了一个UNICODE_STRING 变量之后,它的Buffer 域还没有分配空间,因此我们不能直接赋值,好的做法是使用微软提供的Rtl 系列函数。

 

 

1、字符串

 

Unicode 字符串有一个结构体定义如下:

typedef struct _UNICODE_STRING {

USHORT Length; // 字符串的长度(字节数)

USHORT MaximumLength; // 字符串缓冲区的长度(字节数)

PWSTR Buffer; // 字符串缓冲区

} UNICODE_STRING, *PUNICODE_STRING;

需要注意的是,当我们定义了一个UNICODE_STRING 变量之后,它的Buffer 域还没有分配空间,因此我们不能直接赋值,好的做法是使用微软提供的Rtl 系列函数。

UNICODE_STRING str;

RtlInitUnicodeString(&str, L"my first string!");

或者如下所示:

#include <ntdef.h>

UNICODE_STRING str = RTL_CONSTANT_STRING(L"my first string!");

ring3 不同,我们的UNICODE 字符串并不是以“\0”来表示字符串结束的,而是依靠UNICODE_STRING Length 域来确定。

1)字符串的很多操作都有相应的函数,例如字符串的复制可以使用RtlCopyUnicodeString函数,字符串的比较可以使用RtlCompareUnicodeString 函数,字符串转换成大写可以使用RtlUpcaseUnicodeString 函数(没有转换成小写的),字符串与整数数字互相转换分别可以使用RtlUnicodeStringToInteger RtlIntegerToUnicodeString 函数。

比如在输出日志记录的时候,我们往往同时涉及数字、字符等信息,在C语言中我们可以使用sprintf swprintf 函数来完成任务,这两个函数在驱动中仍然可以使用,但很不安全,因为有许多C 语言的运行时函数都是基于Win32 API 的,在驱动中绝对不能使用,如果我们不清楚哪些可以使用哪些不能使用,就都不要使用,而使用微软推荐的Rtl 系列函数。对应sprintf 的功能函数是RtlStringCbPrintfW,它需要包含头文件“ntstrsafe.h”和静态连接库“ntsafestr.lib”

http://msdn.microsoft.com/en-us/library/ff561817%28VS.85%29.aspx

WCHAR buf[512] = { 0 };

UNICODE_STRING dst;

NTSTATUS status;

……

// 字符串初始化为空串。缓冲区长度为512*sizeof (WCHAR)

RtlInitEmptyString(dst,dst_buf,512*sizeof(WCHAR));

// 调用RtlStringCbPrintfW 来进行打印

status = RtlStringCbPrintfW(

dst->Buffer,L”file path = %wZ file size = %d \r\n”

&file_path,file_size);

//这里调用wcslen 没问题,这是因为RtlStringCbPrintfW打印的字符串是以空结束的。

dst->Length = wcslen(dst->Buffer) * sizeof (WCHAR);

RtlStringCbPrintfW在目标缓冲区内存不足的时候依然可以打印,但是多余的部分被截

去了。返回的status值为STATUS_BUFFER_OVERFLOW。调用这个函数之前很难知道究竟需要多长的缓冲区。一般都采取倍增尝试。每次都传入一个为前次尝试长度为2 倍长度的新缓冲区,直到这个函数返回STATUS_SUCCESS为止。

值得注意的是UNICODE_STRING 类型的指针,通常用%wZ可以打印出字符串。在不

能保证字符串为空结束的时候,必须避免使用%ws或者%s。其他的打印格式字符串与传统

C 语言中的printf函数完全相同。可以尽情使用。

2)内核模式下各种开头函数的区别

函数开头含义

Cc

Cache manager

Cm

Configuration manager

Ex

Executive support routines

FsRtl

File system driver run-time library

Hal

Hardware abstraction layer

Io

I/O manager

Ke

Kernel

Lpc

Local Procedure Call

Lsa

Local security authentication

Mm

Memory manager

Nt

Windows 2000 system services (most of which are exported as Win32 functions),例如NtCreateFile 往往导出为CreateFile

Ob

Object manager

Po

Power manager

Pp

PnP manager

Ps

Process support

Rtl

Run-time library

Se

Security

Wmi

Windows Management Instrumentation

Zw

Mirror entry point for system services (beginning with Nt) that sets previous access mode to kernel, which eliminates parametervalidation, since Nt system services validate parameters only if previous access mode is user see Inside Microsoft Windows 2000

3)大部分的Win32 API 都是通过Native API 实现的,Native API 函数一般都是Win32 API函数前面加上Nt 两个字符,例如CreateFile 函数对应着NtCreateFile 函数,这些Nt 函数都是在“ntdll.dll”实现的,而多数Win32 API 都是在“kernel.dll”导出的,也有少部分GDI或窗口相关的函数是在“gdi32.dll”“user32.dll”导出的。

Native API 从用户模式穿越进入到内核模式调用系统服务,这个穿越过程是通过软中断的方式进入的。这个软中断的实现方法在不同版本的Windows 实现方式略有不同,在Win 2K下是通过“int 2eh”实现的,在Win XP 是通过“sysenter”指令完成的。

软中断会将Native API 的参数和系统服务号的参数一起传进内核模式,不同的NativeAPI 会对应不同的系统服务号,这个过程是由SSDT 辅助完成的。

系统服务函数一般和Native API 具有相同的名字,例如都是NtCreateFile,但它们的实现不同,系统服务调用是在“ntoskrnl.exe”导出的。

4)创建文件

代码
 
   
1 NTSTATUS
2
3 CreateFileTest( IN PUNICODE_STRING FileName )
4
5 {
6
7 HANDLE hFile = NULL;
8
9 NTSTATUS status;
10
11 IO_STATUS_BLOCK Io_Status_Block;
12
13   // 初始化文件路径
14  
15 OBJECT_ATTRIBUTES obj_attrib;
16
17 InitializeObjectAttributes( & obj_attrib,
18
19 FileName,
20
21 OBJ_CASE_INSENSITIVE | OBJ_KERNEL_HANDLE,
22
23 NULL,
24
25 NULL );
26
27   // 创建文件
28  
29 status = ZwCreateFile( & hFile,
30
31 GENERIC_ALL,
32
33   & obj_attrib,
34
35 & Io_Status_Block,
36
37 NULL,
38
39 FILE_ATTRIBUTE_NORMAL,
40
41 FILE_SHARE_READ,
42
43 FILE_CREATE,
44
45 FILE_NON_DIRECTORY_FILE | FILE_SYNCHRONOUS_IO_NONALERT,
46
47 NULL,
48
49 0 );
50
51 if (NT_SUCCESS(status))
52
53 {
54
55 status = STATUS_SUCCESS;
56
57 }
58
59 else
60
61 {
62
63 status = Io_Status_Block.Status;
64
65 }
66
67 KdPrint(( " hFile = %08X " , hFile));
68
69 // 关闭句柄
70
71 if (hFile)
72
73 {
74
75 ZwClose(hFile);
76
77 }
78
79 return status;
80
81 }

 


5)长长整形:

typedef __int64 LONGLONG;

typedef union _LARGE_INTEGER {

struct {

ULONG LowPart;

LONG HighPart;

};

struct {

ULONG LowPart;

LONG HighPart;

} u;

LONGLONG   QuadPart;

} LARGE_INTEGER;

这个共用体的方便之处在于,既可以很方便的得到高32位,低32位,也可以方便的得到整个64位。进行运算和比较的时候,使用QuadPart即可。

2、链表

1)内存的分配与释放

传统的C 语言中,分配内存常常使用的函数是malloc,但在驱动开发过程中这个函数不再有效。驱动中分配内存,最常用的是调用ExAllocatePoolWithTag ExAllocatePool

// 定义一个内存分配标记

#define MEM_TAG ‘MyTt’

// 目标字符串,接下来它需要分配空间。

UNICODE_STRING dst = { 0 };

// 分配空间给目标字符串。根据源字符串的长度。

dst.Buffer = (PWCHAR)ExAllocatePoolWithTag(NonpagedPool,src->Length,M EM_TAG);

if(dst.Buffer == NULL)

{

// 错误处理

status = STATUS_INSUFFICIENT_RESOUCRES;

……

}

dst.Length = dst.MaximumLength = src->Length;

ExAllocatePoolWithTag 的第一个参数NonpagedPool 表明分配的内存是非分页内存,这样它们可以永远存在于物理内存,而不会被分页交换到硬盘上去;第二个参数是长度;第三个参数是一个所谓的内存分配标记

内存分配标记用于检测内存泄漏。一般每个驱动程序定义一个自己的内存标记,也可以在每个模块中定义单独的内存标记。内存标记是随意的32位数字,即使冲突也不会有什么问题。此外也可以分配可分页内存,使用PagedPool标识第一个参数即可。ExAllocatePoolWithTag分配的内存可以使用 ExFreePool来释放。

ExFreePool 只需要提供需要释放的指针即可。举例如下:

ExFreePool(dst.Buffer);

dst.Buffer = NULL;

dst.Length = dst.MaximumLength = 0;

注意,ExFreePool不能用来释放一个栈空间的指针,否则系统立刻崩溃。诸如下面的代码将会招致立刻蓝屏的灾难:

UNICODE_STRING src = RTL_CONST_STRING(L”My source string!”);

ExFreePool(src.Buffer);

请务必保持ExAllocatePoolWithTag ExAllocatePool ExFreePool 的成对关系。Windows内核提供了一个双向链表结构LIST_ENTRY,此外还有一些其他的结构,比如SINGLE_LIST_ENTRY(单向链表)。

LIST_ENTRY 是一个双向链表结构,通常的做法是我们自定义一个结构体,将LIST_ENTRY作为该结构体的一个子域,将LIST_ENTRY作为结构体的第一个子域是最简单的做法。如下所示:

typedef struct _MYDATASTRUCT{

LIST_ENTRY ListEntry;

ULONG number;

} MYDATASTRUCT, *PMYDATASTRUCT;

如果把它放在后面,这时候,如果我们想获取节点的地址,需要有一个计算偏移的过程,DDK 里面提供了一个宏CONTAINING_RECORD 可以在指定结构中找到节点地址的指针。

http://msdn.microsoft.com/en-us/library/ff554296%28VS.85%29.aspx

如:

for(p = my_list_head.Flink; p != &my_list_head.Flink; p = p->Flink)

{

PMY_FILE_INFOR elem =

CONTAINING_RECORD(p,MY_FILE_INFOR, list_entry);

// 在这里做需要做的事…

}

其中的CONTAINING_RECORD是一个WDK中已经定义的宏,作用是通过一个LIST_ENTRY结构的指针,找到这个结构所在的节点的指针。定义如下:

#define CONTAINING_RECORD(address, type, field) ((type *)( \

(PCHAR)(address) - \

(ULONG_PTR)(&((type *)0)->field)))

从上面的代码中可以总结如下的信息:

LIST_ENTRY中的数据成员Flink指向下一个LIST_ENTRY。整个链表中的最后一个LIST_ENTRYFlink不是空。而是指向头节点。得到LIST_ENTRY之后,要用CONTAINING_RECORD来得到链表节点中的数据。

2)使用自旋锁

代码
 
   
1 KSPIN_LOCK my_spin_lock;
2
3 KIRQL irql;
4
5 // 初始化
6
7 KeInitializeSpinLock( & my_spin_lock);
8
9 KeAcquireSpinLock( & my_spin_lock, & irql);
10
11 // do something …
12
13 KeReleaseSpinLock( & my_spin_lock,irql);
14
15 一个例子程序:
16
17 VOID
18
19 LinkListTest()
20
21 {
22
23 LIST_ENTRY linkListHead; // 链表
24
25 PMYDATASTRUCT pData; // 节点数据
26
27 ULONG i = 0 ; // 计数
28
29 KSPIN_LOCK spin_lock; // 自旋锁
30
31 KIRQL irql; // 中断级别
32
33 // 初始化
34
35 InitializeListHead( & linkListHead);
36
37 KeInitializeSpinLock( & spin_lock);
38
39 // 向链表中插入10 个元素
40
41 KdPrint(( " [Test] Begin insert to link list " ));
42
43 // 锁定,注意这里的irql 是个指针
44
45 KeAcquireSpinLock( & spin_lock, & irql);
46
47 for (i = 0 ; i < 10 ; i ++ )
48
49 {
50
51 pData = (PMYDATASTRUCT)ExAllocatePool(PagedPool, sizeof (MYDATASTRUCT));
52
53 pData -> number = i;
54
55 InsertHeadList( & linkListHead, & pData -> ListEntry);
56
57 }
58
59 // 解锁,注意这里的irql 不是指针
60
61 KeReleaseSpinLock( & spin_lock, irql);
62
63 // 从链表中取出所有数据并显示
64
65 KdPrint(( " [Test] Begin remove from link list\n " ));
66
67 // 锁定
68
69 KeAcquireSpinLock( & spin_lock, & irql);
70
71 while ( ! IsListEmpty( & linkListHead))
72
73 {
74
75 PLIST_ENTRY pEntry = RemoveTailList( & linkListHead);
76
77 // 获取节点地址
78
79 pData = CONTAINING_RECORD(pEntry, MYDATASTRUCT, ListEntry);
80
81 // 读取节点数据
82
83 KdPrint(( " [Test] %d\n " ,pData -> number));
84
85 ExFreePool(pData);
86
87 }
88
89 // 解锁
90
91 KeReleaseSpinLock( & spin_lock, irql);
92
93 }

 


需要注意的是,像上述代码中在函数中定义一个锁的做法是没有实际意义的,因为它是一个局部变量,被定义在栈中,每当有线程调用该函数时,都会重新初始化一个锁,因此它就失去了本来的作用。

在实际的编程中,我们应该把锁定义为一个全局变量、静态(static )变量或者将其定义在堆中。不过在驱动中应该尽量避免使用全局变量,良好的做法是将需要全局访问的变量

定义为设备扩展结构体DEVICE_EXTENSION 的一个子域。另外,我们还可以为每个链表都定义并初始化一个锁,在需要向该链表插入或移除节点时不使用前面介绍的普通函数,而是使用如下方法:

ExInterlockedInsertHeadList(&linkListHead, &pData->ListEntry, &spin_lock);

pData = (PMYDATASTRUCT)ExInterlockedRemoveHeadList(&linkListHead, &spin_lock);

此时在向链表中插入或移除节点时会自动调用关联的锁进行加锁操作,可以有效地保证多线程安全性,加裁驱动除了使用DriverStudio外,还可以使用KmdManager等工具。

NT式驱动的安装是基于服务的,可以通过修改注册表进行,也可以直接通过服务函数如CreateService 进行安装;但WDM 式驱动不同,它安装的时候需要通过编写一个inf 文件进行控制。除此之外,它们所使用的头文件也不大相同,例如NT 式驱动往往需要导入一个名为“ntddk.h”的头文件,而WDM 式驱动需要的却是“wdm.h”头文件。我们在学习的过程中所编写的大多属于NT 式驱动,除非我们需要自己的设备支持即插即用,才需要考虑编写WDM 式驱动程序。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
17天前
|
安全 固态存储 文件存储
Windows 7纯净版重装教程|附微软原版镜像下载+驱动安装避坑技巧
本文详细介绍如何安全、高效地重装电脑系统,解决蓝屏、崩溃等问题。基于10年经验,涵盖从官方镜像获取、启动盘制作、数据备份到系统部署的全流程,并针对老旧机型优化。提供驱动一键安装工具和系统激活指南,确保无后门风险。文中还列出常见问题解决方案及操作禁忌,帮助用户顺利完成系统重装,让电脑重获新生。建议收藏并转发给有需要的朋友,欢迎留言咨询疑难问题。
|
9天前
|
算法 关系型数据库 测试技术
WHQL微软驱动签名方案,让驱动程序在Windows系统流畅运行
WHQL认证(Windows徽标认证)是微软设立的严格测试标准,旨在确保驱动程序的兼容性、稳定性和互通性。本文介绍了三种WHQL微软驱动签名方案:单系统签名、多系统签名和硬件兼容性测试方案,分别满足不同开发商的需求。通过WHQL认证,不仅能消除Windows安装警告,提升用户体验,还能获得“Designed for Windows”徽标授权,入列全球Windows Catalog及HCL产品表,提升品牌权威性和采购优先权。此外,访问微软OCA可获取错误反馈,助力产品质量改进。选择合适的签名方案,让驱动在Windows系统中流畅运行!
|
5月前
|
监控 Ubuntu Linux
视频监控笔记(五):Ubuntu和windows时区同步问题-your clock is behind
这篇文章介绍了如何在Ubuntu和Windows系统中通过设置相同的时区并使用ntp服务来解决时间同步问题。
135 4
视频监控笔记(五):Ubuntu和windows时区同步问题-your clock is behind
|
5月前
|
Ubuntu Linux Python
如何利用wsl-Ubuntu里conda用来给Windows的PyCharm开发
如何在WSL(Windows Subsystem for Linux)的Ubuntu环境中使用conda虚拟环境来为Windows上的PyCharm开发设置Python解释器。
503 1
|
5月前
|
监控 关系型数据库 MySQL
PowerShell 脚本编写 :自动化Windows 开发工作流程
PowerShell 脚本编写 :自动化Windows 开发工作流程
241 0
|
7月前
|
vr&ar C# 图形学
WPF与AR/VR的激情碰撞:解锁Windows Presentation Foundation应用新维度,探索增强现实与虚拟现实技术在现代UI设计中的无限可能与实战应用详解
【8月更文挑战第31天】增强现实(AR)与虚拟现实(VR)技术正迅速改变生活和工作方式,在游戏、教育及工业等领域展现出广泛应用前景。本文探讨如何在Windows Presentation Foundation(WPF)环境中实现AR/VR功能,通过具体示例代码展示整合过程。尽管WPF本身不直接支持AR/VR,但借助第三方库如Unity、Vuforia或OpenVR,可实现沉浸式体验。例如,通过Unity和Vuforia在WPF中创建AR应用,或利用OpenVR在WPF中集成VR功能,从而提升用户体验并拓展应用功能边界。
160 1
|
6月前
|
存储 安全 程序员
Windows任务管理器开发原理与实现
Windows任务管理器开发原理与实现
|
7月前
|
开发者 C# Windows
WPF与游戏开发:当桌面应用遇见游戏梦想——利用Windows Presentation Foundation打造属于你的2D游戏世界,从环境搭建到代码实践全面解析新兴开发路径
【8月更文挑战第31天】随着游戏开发技术的进步,WPF作为.NET Framework的一部分,凭借其图形渲染能力和灵活的UI设计,成为桌面游戏开发的新选择。本文通过技术综述和示例代码,介绍如何利用WPF进行游戏开发。首先确保安装最新版Visual Studio并创建WPF项目。接着,通过XAML设计游戏界面,并在C#中实现游戏逻辑,如玩家控制和障碍物碰撞检测。示例展示了创建基本2D游戏的过程,包括角色移动和碰撞处理。通过本文,WPF开发者可更好地理解并应用游戏开发技术,创造吸引人的桌面游戏。
390 0
|
Windows 数据安全/隐私保护 网络协议
|
1天前
|
Unix 虚拟化 Windows
Windows Server 2025 中文版、英文版下载 (2025 年 3 月更新)
Windows Server 2025 中文版、英文版下载 (2025 年 3 月更新)
25 4
Windows Server 2025 中文版、英文版下载 (2025 年 3 月更新)