迁移学习让AI更好地理解上下文:Salesforce新论文

本文涉及的产品
文档翻译,文档翻译 1千页
NLP自然语言处理_基础版,每接口每天50万次
语种识别,语种识别 100万字符
简介:
本文来自AI新媒体量子位(QbitAI)

让神经网络理解每个词的意思很容易,但上下文、词语之间的关系,依然是自然语言处理(NLP)中的难题。

Salesforce的一群NLP研究者发现,搞图像识别的同行们有个不错的办法,值得一试。

在图像识别领域,把ImageNet上预训练的CNN拿来,用在其他图像识别模型中,已经成为一种惯例。这种把训练好的模型参数迁移到新模型的方法,也就是这两年大热的迁移学习。

理解上下文,就是一个非常适合迁移学习的问题。

Learned in Translation

我们所能想到的大部分NLP任务,都有“理解上下文”的需求。

机器翻译模型需要知道英语句子中的这些词是怎样组合在一起的,才能正确地把它翻译成其他语言;自动文本摘要模型需要了解上下文,才能知道哪些词是最重要的;问答模型需要知道问题中的词如何与文档中的词关联。

既然大家都需要,那能不能选一个任务训练一个“理解上下文”的组件,然后用到其他任务中呢?

 用机器学习预训练一个编码器,得到的上下文向量(CoVe)能提升其他NLP模型的表现

Saleforce的新论文Learned in Translation: Contextualized Word Vectors讲的就是这个问题。

Bryan McCann等研究员先通过英语-德语翻译任务,训练一个神经网络模型在上上文中理解词语,得到名为“上下文向量(context vectors, CoVe)”的输出。

然后,他们把CoVe用到了语义情感分析、问题分类、文本蕴含、问答等多种NLP任务上,这些模型的性能都得到了提升。

词向量

如今大部分NLP深度学习模型,都靠词向量(word vectors)来表示词义。在为特定任务训练模型之前,词向量可能是随机的数字,也可能用用word2vec、GloVe、FastText等方法进行了初始化。

word2vec和GloVe生成的词向量,与在自然语言中经常与这个词共现的词相关,其中word2vec模型会根据输入词来预测周围的相关词语,而GloVe在此基础上,还会统计两个词共同出现的频率。

在一个NLP任务中使用word2vec和GloVe训练的词向量,比随机初始化的词向量效果要好,但是还有改进的空间:

模型需要知道怎样使用这些词向量,也就是如何把它们置于上下文之中。

理解上下文

要在上下文中理解词语,通常会用到循环神经网络(RNN)。RNN非常适合处理词向量序列,本文作者为了更好地处理长序列,使用了一种特殊的RNN结构:长短时记忆网络(LSTM)。

这个LSTM是一个编码器,它以词向量作为输入,输出隐藏向量。研究员们尝试预训练这个编码器,让它输出在多种NLP任务上通用的隐藏向量。

用什么任务来进行预训练呢?他们选择了机器翻译。

与其他NLP任务相比,机器翻译有着更大规模的数据集,也更适合用来训练通用隐藏向量:它比文本分类等任务更需要软件理解语言的含义。

预训练完成后,研究员们得到一个LSTM,称为MT-LSTM,可以用来为新句子输出隐藏向量。他们称这些隐藏向量为CoVe,可以作为其他NLP模型的输入。

迁移效果

Salesforce研究员探索了在文本分类和问答模型上使用CoVe的效果。

他们使用了下列数据集:

  • 情感分类
  • SST-2
https://nlp.stanford.edu/sentiment/treebank.html
  • SST-5
https://nlp.stanford.edu/sentiment/treebank.html
  • IMDb
http://ai.stanford.edu/~amaas/data/sentiment/
  • 问题分类
  • TREC-6
http://cogcomp.cs.illinois.edu/Data/QA/QC/
  • TREC-50
http://cogcomp.cs.illinois.edu/Data/QA/QC/
  • 蕴含分类
  • SNLI
    https://nlp.stanford.edu/projects/snli/
  • 问答
  • SQuAD
    https://rajpurkar.github.io/SQuAD-explorer/

在每一类任务上,他们都对不同方法做了比较,也就是使用以下类型的输入序列:随机初始化词向量、用GloVe初始化的词向量、经GloVe+CoVe初始化的词向量。

GloVe和CoVe一起用时,需要用预训练的MT-LSTM来处理GloVe的输出序列,得到CoVe序列,然后将其中的每个向量加在GloVe序列中相应的向量之上。

结果显示,GloVe和CoVe一起用效果是最好的:

在这些任务上,都是机器学习训练集越大,使用CoVe的效果就越好:

结论

简单概括起来,这项研究就是说,让AI学一学翻译,能帮它更好地理解语言,在分类、问答等等其他NLP任务上都会有更好的表现。

相关链接

博客文章:
https://einstein.ai/research/learned-in-translation-contextualized-word-vectors

论文:
Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. 2017.
Learned in Translation: Contextualized Word Vectors
https://einstein.ai/static/images/layouts/research/cove/McCann2017LearnedIT.pdf

PyTorch代码:
https://github.com/salesforce/cove

word2vec:
https://www.tensorflow.org/tutorials/word2vec

GloVe:
https://nlp.stanford.edu/projects/glove/

FastText:
https://github.com/facebookresearch/fastText

—— ——

本文作者:李林
原文发布时间:2017-08-06
相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
175 9
|
7天前
|
人工智能 开发框架 算法
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
Qwen-Agent 是阿里通义开源的一个基于 Qwen 模型的 Agent 应用开发框架,支持指令遵循、工具使用、规划和记忆能力,适用于构建复杂的智能代理应用。
113 10
Qwen-Agent:阿里通义开源 AI Agent 应用开发框架,支持构建多智能体,具备自动记忆上下文等能力
|
15天前
|
人工智能 Linux API
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
PromptWizard 是微软开源的 AI 提示词自动化优化框架,通过自我演变和自我适应机制,迭代优化提示指令和上下文示例,提升大型语言模型(LLMs)在特定任务中的表现。本文详细介绍了 PromptWizard 的主要功能、技术原理以及如何运行该框架。
103 8
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
|
2月前
|
人工智能 自然语言处理 前端开发
VideoChat:高效学习新神器!一键解读音视频内容,结合 AI 生成总结内容、思维导图和智能问答
VideoChat 是一款智能音视频内容解读助手,支持批量上传音视频文件并自动转录为文字。通过 AI 技术,它能快速生成内容总结、详细解读和思维导图,并提供智能对话功能,帮助用户更高效地理解和分析音视频内容。
131 6
VideoChat:高效学习新神器!一键解读音视频内容,结合 AI 生成总结内容、思维导图和智能问答
|
2月前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
102 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
AI驱动的个性化学习路径优化
在当前教育领域,个性化学习正逐渐成为一种趋势。本文探讨了如何利用人工智能技术来优化个性化学习路径,提高学习效率和质量。通过分析学生的学习行为、偏好和表现,AI可以动态调整学习内容和难度,实现真正的因材施教。文章还讨论了实施这种技术所面临的挑战和潜在的解决方案。
94 7
|
2月前
|
人工智能 自然语言处理 搜索推荐
AI辅助教育:个性化学习的新纪元
【10月更文挑战第31天】随着人工智能(AI)技术的发展,教育领域迎来了一场前所未有的变革。AI辅助教育通过智能推荐、语音助手、评估系统和虚拟助教等应用,实现了个性化学习,提升了教学效率。本文探讨了AI如何重塑教育模式,以及个性化学习在新时代教育中的重要性。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI驱动的个性化学习平台构建###
【10月更文挑战第29天】 本文将深入探讨如何利用人工智能技术,特别是机器学习与大数据分析,构建一个能够提供高度个性化学习体验的在线平台。我们将分析当前在线教育的挑战,提出通过智能算法实现内容定制、学习路径优化及实时反馈机制的技术方案,以期为不同背景和需求的学习者创造更加高效、互动的学习环境。 ###
82 3
|
3月前
|
机器学习/深度学习 人工智能 Cloud Native
在AI师傅(AI-Shifu.com)学习通义灵码的旅程
在这个数字化时代,编程技能愈发重要。通过AI师傅平台,我接触并学习了阿里云推出的通义灵码。从初识到深入学习,我系统掌握了云计算基础、云原生技术、数据库管理和大数据与人工智能等方面的知识。通过实践项目,我不仅巩固了理论,还提升了实际操作能力。通义灵码的易用性和强大功能,让我对云计算有了全新认识。感谢AI师傅提供的学习机会,推荐大家参与征文活动,共同分享学习成果。
|
3月前
|
人工智能