Breakout detection in the wild

简介: https://blog.twitter.com/2014/breakout-detection-in-the-wild ...
https://blog.twitter.com/2014/breakout-detection-in-the-wild
目录
相关文章
|
2月前
|
机器学习/深度学习 编解码 算法
论文精度笔记(二):《Deep Learning based Face Liveness Detection in Videos 》
论文提出了基于深度学习的面部欺骗检测技术,使用LRF-ELM和CNN两种模型,在NUAA和CASIA数据库上进行实验,发现LRF-ELM在检测活体面部方面更为准确。
30 1
论文精度笔记(二):《Deep Learning based Face Liveness Detection in Videos 》
|
7月前
|
机器学习/深度学习 算法 固态存储
Objection Detection 手记
本文介绍了四个目标检测的经典算法:Faster R-CNN、FPN、SSD和RetinaNet。Faster R-CNN是两阶段算法,包括CNN特征提取、RPN(候选框生成)和RoI Pooling+Classifier。FPN通过高层到低层的信息传递增强特征金字塔,提高小物体检测性能。SSD是一阶段算法,直接在多尺度特征图上预测默认边界框。RetinaNet采用FPN结构和Focal Loss解决类别不平衡问题,优化one-stage检测。5月更文挑战第8天
58 5
|
7月前
|
算法 BI 计算机视觉
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
64 1
|
机器学习/深度学习 自然语言处理 算法
TASLP21-Reinforcement Learning-based Dialogue Guided Event Extraction to Exploit Argument Relations
事件抽取是自然语言处理的一项基本任务。找到事件论元(如事件参与者)的角色对于事件抽取至关重要。
102 0
|
7月前
|
算法 计算机视觉
2017cvpr论文解读——Nasal Patches and Curves for Expression-Robust 3D Face Recognition
2017cvpr论文解读——Nasal Patches and Curves for Expression-Robust 3D Face Recognition
46 1
|
机器学习/深度学习 数据挖掘
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
58 1
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
|
机器学习/深度学习 编解码 数据可视化
Speech Emotion Recognition With Local-Global aware Deep Representation Learning论文解读
语音情感识别(SER)通过从语音信号中推断人的情绪和情感状态,在改善人与机器之间的交互方面发挥着至关重要的作用。尽管最近的工作主要集中于从手工制作的特征中挖掘时空信息,但我们探索如何从动态时间尺度中建模语音情绪的时间模式。
146 0
|
机器学习/深度学习 自然语言处理 算法
Retrieval-Augmented Generative Question Answering for Event Argument Extraction论元解读
长期以来,事件论元抽取一直被研究为基于抽取的方法的序列预测问题,孤立地处理每个论元。尽管最近的工作提出了基于生成的方法来捕获交叉论元依赖性,但它们需要生成和后处理复杂的目标序列(模板)。
176 0
|
机器学习/深度学习 算法 计算机视觉
Automatic Detection of Welding Defects Using Faster R-CNN
专家需要正确检测测试结果,手动解释超过500个区块的结构的无线电图形测试图像需要大量时间和成本。
103 0
|
机器学习/深度学习 算法 数据挖掘
A Generative Adversarial Network-based Deep Learning Method for Low-quality Defect ImageReconstructi
本文提出了一种基于生成对抗网络 (GAN) 的 DL 方法,用于低质量缺陷图像识别。 GAN用于重建低质量缺陷图像,并建立VGG16网络识别重建图像。
153 0