kNN最邻近规则分类

简介: 原理介绍:          这一个月来恶补了一下大学的数学知识,把高数、线代、概率论、复变函数和积分变换又温习了一遍,大学里学的差一点就忘光了。大学时每次上数学课可都是昏昏欲睡啊!哈哈!学习人工智能中关于分类的知识,碰到很多数学描述都看不太懂,才意识到自己的数学在不拾一拾就剩加减乘除了。

原理介绍:

         这一个月来恶补了一下大学的数学知识,把高数、线代、概率论、复变函数和积分变换又温习了一遍,大学里学的差一点就忘光了。大学时每次上数学课可都是昏昏欲睡啊!哈哈!学习人工智能中关于分类的知识,碰到很多数学描述都看不太懂,才意识到自己的数学在不拾一拾就剩加减乘除了。

         一个同事,也是搞C++ 的,对预测彩票非常感兴趣。我们认为这是个数学问题。做游戏开发,碰到数学问题还真不多,大部分都是逻辑问题,如A打伤了B,B打死了C诸如此类。然后提到如何实现通过程序为人们推荐手机,发现主要也是数学问题。总结来,在日常的软件开发中,主要涉及逻辑控制和数学建模两大部分,为了实现逻辑控制,我们精通编程语法,熟记API,优雅的涉及模块和类,高效的传输和存储数据。是的,这确实已经是很复杂的学问了。但对于我们来说,数学问题更让人着迷。

         其实今天是要记录一下k-NN最近邻规则算法的。最近养成了一个习惯,将一个数学模型掌握以后,应用到一个例子中,并把它用Blog记录下来。K-NN是一种非常朴素的分类算法,但是在步入正题之前,还是要抛个转。

         比如要实现一个模型为人人们推荐购买哪一款手机。为简化模型我们只基于协同过滤做推荐(洒家也是在推荐系统论坛长期潜水之人,常用的推荐策略还是略知一二的)。举个例子,已知A、B二人,A是月薪15k年龄28的帅哥,而B是月薪3K的年龄23的实习生,还知道A购买了Iphone, 而B购买了小米。如果C是月薪13K年龄27,那么你十分有可能和A进行相同的选择,也去购买Iphone。数学上认为C的函数值更解决于A。这就是k-NN最近邻规则的思想,找到和目标属性最接近的样本,并把它们归为同一类别。物以类聚,人以群分嘛。

         如果已知100 个各个收入阶层、各个年龄段的手机购买数据,把其作为训练样本,从中选择一个和目标情况最为接近的一个样本,并把该样本使用的手机推荐给目标,这种分类方法称之为1-NN最近邻规则。进行推广之,从100 人中选出5个最接近目标情况的样本,并把他们使用最多的一款手机推荐给目标,则称之为k-NN最近邻规则,此时k=5。

         设计k-NN最近邻规则时,最重要的是确定k值和设计计算样本之间距离(或相似度)的度量函数。

         首先说计算k值。有时可以根据经验。比如上面推荐手机的例子,k=1 显然不合适,比如月薪20k的大牛可能就喜欢android,非要买个三星也是有的,如果目标和此大牛情况相近就会被推荐三星,但是实际上这一类人大部分都在使用iphone。而若选择5,那么虽然这个大牛使用了三星,但是其他四个人都是使用iphone,那么系统仍然会推荐iphone,这就非常符合现实情况了。但是k值又不能太大,太大计算量增大,并且有可能会出现给一个20k的大牛推荐山寨机的结果。更科学的方法是尝试几种最有可能的k值,计算该k值下的误差率,选择误差率最小k值。

         下面再说一下如何计算两个样本之间的距离,即确定一个度量函数D。任意两个样本a、b,D(a, b) 得到a、b之间的距离。而a样本又有各个属性,数学表示X=(x1, x2,…..)。最简单计算距离的方法是欧几里得公式:

        

         但是欧几里得法有一个缺陷,若属性的单位发生变化,可能会影响原来各个样本之间的相对距离。如把月薪20k改成月薪20000那么可能会造成原来A更接近于B,但是变成A更接近于C。这里也能说明k值不宜选的太小。

         下面附一个小示例:

已知20个样本:

样本

月收入

年龄

手机

1

2k

18

Iphone6

…….

 

 

 

10

5k

23

小米

……

 

 

 

50

10k

25

Iphone

 

又已知10个测试样本:

样本

月收入

年龄

手机

1

6k

22

三星

…….

 

 

 

2

9k

25

Iphone

 

距离度量函数选择欧几里得公式,不同的K值测试的误差对比如下:

K值

 1

 2

 3

 4

 5

 6

7

 8

 9

误差率

 19%

 19%

 10%

 28%

 19%

 28%

 28%

 28%

 28%

 

所以选择K值为3,

运行代码如下:

train_data = []
test_data  = []

def init_data():
    f = open("train_data.txt")
    dest = train_data
    for line in f.readlines():
        if len(line) == 0:
            continue
        if line[0] == '#':
            if -1 != line.find('test_data'):
                dest = test_data
            continue
        line_array = line.strip().split()
        if len(line_array) == 3:
            line_array[0] = float(line_array[0])
            line_array[1] = int(line_array[1])
            line_array.append(0)
            dest.append(line_array)
    f.close()

def select_k_neighbour(k, income, age):
    def my_cmp(E1, E2):
        return -cmp(E2[3], E1[3]) 

    distance = []
    for item in train_data:
        income2 = item[0]
        age2    = item[1]
        item[3] = (income - income2) * (income - income2) + (age - age2) * (age - age2)
        distance.append(item)

    distance.sort(my_cmp)
    select_k = {}
    for k in range(0, k):
        phone = distance[k][2]
        if False == select_k.has_key(phone):
            select_k[phone] = 1
        else:
            select_k[phone] = select_k[phone] + 1

    ret_phone = ''
    max       = 0
    for k in select_k:
        if select_k[k] > max:
            max = select_k[k]
            ret_phone = k

    return ret_phone

def knn_train(k):
    right = 0.0
    wrong = 0.0
    for item in test_data:
        income = item[0]
        age    = item[1]
        phone  = item[2]
        ret_phone = select_k_neighbour(k, income, age)
        if ret_phone == phone:
            right = right + 1
        else:
            wrong = wrong + 1
    return right / (right + wrong)

init_data()
print("train_data", train_data)
print("test_data", test_data)

ret = []
for i in range(0, 10):
    rate = 1 - float(int(knn_train(i+1) * 100 )) / 100
    ret.append(str(rate))
print('')
print(ret)

 数据文件为:

# train_data
# income    age     phone
    2       20      N
    3       21      M
    3       22      N
    3.5     22      N
    4       23      M
    4       24      M
    5       24      M
    5.5     25      M
    6       25      M
    7       26      I
    7.5     25      M
    7.5     28      I
    8       27      I
    9       27      I
    10      29      I
    11      28      M
    12      27      I
    13      28      M
    14      30      I
    15      30      I      
    16      30      I
    
# test_data
    2.5     23      N
    3       24      M
    3.5     24      N
    4       25      M
    4.5     26      M
    5.5     26      M
    6       27      I
    7       26      M
    8       28      I
    9       30      I
    12      31      I
    

 

k-NN 算法的优化:

         很显然的一个问题是k-NN要求遍历所有的训练样本,若训练样本非常庞大,那么计算量可能是不能接受的。针对k-NN算法的优化方法有:

 

裁剪训练样本

         既然训练样本太多,那么我们就把训练样本比较接近的合并成一项,如月薪10k-12k的统一化为10k之类,减少训练样本数量。

建立搜索树

         思想就是先分几个大类,在再小类中找相似的,如>10k的在某一类别中,那么一次可以淘汰N多不太可能的计算。

属性降维法

         本文中只选择了收入和年龄作为人的属性,实际让远远应比此大的多的多,在遍历训练样本时,可以从中选择有代表性的属性用于计算,或者可以通过变换减少属性。

 

目录
相关文章
|
7天前
|
算法 Python
KNN
【9月更文挑战第11天】
25 13
|
5天前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
19 9
|
5天前
|
算法 大数据
K-最近邻(KNN)
K-最近邻(KNN)
|
16天前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
1月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
|
1月前
|
数据可视化 算法 前端开发
基于python flask+pyecharts实现的中药数据可视化大屏,实现基于Apriori算法的药品功效关系的关联规则
本文介绍了一个基于Python Flask和Pyecharts实现的中药数据可视化大屏,该系统应用Apriori算法挖掘中药药材与功效之间的关联规则,为中医药学研究提供了数据支持和可视化分析工具。
|
1月前
|
算法 5G Windows
OFDM系统中的信号检测算法分类和详解
参考文献 [1]周健, 张冬. MIMO-OFDM系统中的信号检测算法(I)[J]. 南京工程学院学报(自然科学版), 2010. [2]王华龙.MIMO-OFDM系统传统信号检测算法[J].科技创新与应用,2016(23):63.
44 4
|
1月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【8月更文挑战第2天】决策树算法以其直观性和解释性在机器学习领域中独具魅力,尤其擅长处理非线性关系。相较于复杂模型,决策树通过简单的分支逻辑实现数据分类,易于理解和应用。本示例通过Python的scikit-learn库演示了使用决策树对鸢尾花数据集进行分类的过程,并计算了预测准确性。虽然决策树优势明显,但也存在过拟合等问题。即便如此,无论是初学者还是专家都能借助决策树的力量提升数据分析能力。
26 4
|
25天前
|
存储 算法 安全
密码算法的分类
【8月更文挑战第23天】
20 0
|
2月前
knn增强数据训练
【7月更文挑战第28天】
19 2