1.6. Map-Reduce
1.6.1. 使用 Map-Reduce 统计Web 服务器 access.log 日志文件
首先将web服务器access.log倒入到mongodb,参考 http://netkiller.github.io/article/log.html。 格式如下:
{ "_id" : ObjectId("51553efcd8616be7e5395c0d"), "remote_addr" : "192.168.2.76", "remote_user" : "-", "time_local" : "29/Mar/2013:09:20:31 +0800", "request" : "GET /tw/ad.jpg HTTP/1.1", "status" : "200", "body_bytes_sent" : "5557", "http_referer" : "http://www.example.com/tw/", "http_user_agent" : "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.17 (KHTML, like Gecko) Chrome/24.0.1312.57 Safari/537.17", "http_x_forwarded_for" : "-" }
创建map方法
var mapFunction1 = function() { emit(this.remote_addr, {count:1}); };
创建reduce方法
var reduceFunction1 = function(key, values) { var total = 0; values.forEach(function (value) {total += value.count;}); return {ipaddr: key, count:total}; };
分析数据
db.access.mapReduce(mapFunction1, reduceFunction1, {out : "resultCollection"});
输出结果
db.resultCollection.find();
Demo 数据库
> db.resultCollection.find(); { "_id" : "192.168.2.109", "value" : { "count" : 554 } } { "_id" : "192.168.2.38", "value" : { "count" : 26 } } { "_id" : "192.168.2.39", "value" : { "count" : 72 } } { "_id" : "192.168.2.40", "value" : { "count" : 3564 } } { "_id" : "192.168.2.49", "value" : { "count" : 955 } } { "_id" : "192.168.2.5", "value" : { "count" : 2 } } { "_id" : "192.168.2.76", "value" : { "count" : 60537 } } { "_id" : "192.168.3.12", "value" : { "count" : 9577 } } { "_id" : "192.168.3.14", "value" : { "count" : 343 } } { "_id" : "192.168.3.18", "value" : { "count" : 1006 } } { "_id" : "192.168.3.26", "value" : { "count" : 2714 } } { "_id" : "192.168.6.19", "value" : { "count" : 668 } } { "_id" : "192.168.6.2", "value" : { "count" : 123760 } } { "_id" : "192.168.6.30", "value" : { "count" : 1196 } } { "_id" : "192.168.6.35", "value" : { "count" : 1050 } }