python爬虫从入门到放弃(七)之 PyQuery库的使用

简介: PyQuery库也是一个非常强大又灵活的网页解析库,如果你有前端开发经验的,都应该接触过jQuery,那么PyQuery就是你非常绝佳的选择,PyQuery 是 Python 仿照 jQuery 的严格实现。

PyQuery库也是一个非常强大又灵活的网页解析库,如果你有前端开发经验的,都应该接触过jQuery,那么PyQuery就是你非常绝佳的选择,PyQuery 是 Python 仿照 jQuery 的严格实现。语法与 jQuery 几乎完全相同,所以不用再去费心去记一些奇怪的方法了。

官网地址:http://pyquery.readthedocs.io/en/latest/
jQuery参考文档: http://jquery.cuishifeng.cn/

初始化

初始化的时候一般有三种传入方式:传入字符串,传入url,传入文件

字符串初始化

html = '''
<div>
    <ul>
         <li class="item-0">first item</li>
         <li class="item-1"><a href="link2.html">second item</a></li>
         <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li>
         <li class="item-1 active"><a href="link4.html">fourth item</a></li>
         <li class="item-0"><a href="link5.html">fifth item</a></li>
     </ul>
</div>
'''

from pyquery import PyQuery as pq
doc = pq(html)
print(doc)
print(type(doc))
print(doc('li'))

结果如下:

由于PyQuery写起来比较麻烦,所以我们导入的时候都会添加别名:
from pyquery import PyQuery as pq

这里我们可以知道上述代码中的doc其实就是一个pyquery对象,我们可以通过doc可以进行元素的选择,其实这里就是一个css选择器,所以CSS选择器的规则都可以用,直接doc(标签名)就可以获取所有的该标签的内容,如果想要获取class 则doc('.class_name'),如果是id则doc('#id_name')....

URL初始化

from pyquery import PyQuery as pq

doc = pq(url="http://www.baidu.com",encoding='utf-8')
print(doc('head'))

文件初始化

我们在pq()这里可以传入url参数也可以传入文件参数,当然这里的文件通常是一个html文件,例如:pq(filename='index.html')

基本的CSS选择器

html = '''
<div id="container">
    <ul class="list">
         <li class="item-0">first item</li>
         <li class="item-1"><a href="link2.html">second item</a></li>
         <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li>
         <li class="item-1 active"><a href="link4.html">fourth item</a></li>
         <li class="item-0"><a href="link5.html">fifth item</a></li>
     </ul>
 </div>
'''
from pyquery import PyQuery as pq
doc = pq(html)
print(doc('#container .list li'))

这里我们需要注意的一个地方是doc('#container .list li'),这里的三者之间的并不是必须要挨着,只要是层级关系就可以,下面是常用的CSS选择器方法:

查找元素

子元素
children,find
代码例子:

html = '''
<div id="container">
    <ul class="list">
         <li class="item-0">first item</li>
         <li class="item-1"><a href="link2.html">second item</a></li>
         <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li>
         <li class="item-1 active"><a href="link4.html">fourth item</a></li>
         <li class="item-0"><a href="link5.html">fifth item</a></li>
     </ul>
 </div>
'''
from pyquery import PyQuery as pq
doc = pq(html)
items = doc('.list')
print(type(items))
print(items)
lis = items.find('li')
print(type(lis))
print(lis)

运行结果如下

从结果里我们也可以看出通过pyquery找到结果其实还是一个pyquery对象,可以继续查找,上述中的代码中的items.find('li') 则表示查找ul里的所有的li标签
当然这里通过children可以实现同样的效果,并且通过.children方法得到的结果也是一个pyquery对象

li = items.children()
print(type(li))
print(li)

同时在children里也可以用CSS选择器

li2 = items.children('.active') print(li2)

父元素
parent,parents方法

通过.parent就可以找到父元素的内容,例子如下:

html = '''
<div id="container">
    <ul class="list">
         <li class="item-0">first item</li>
         <li class="item-1"><a href="link2.html">second item</a></li>
         <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li>
         <li class="item-1 active"><a href="link4.html">fourth item</a></li>
         <li class="item-0"><a href="link5.html">fifth item</a></li>
     </ul>
 </div>
'''
from pyquery import PyQuery as pq
doc = pq(html)
items = doc('.list')
container = items.parent()
print(type(container))
print(container)

通过.parents就可以找到祖先节点的内容,例子如下:

html = '''
<div class="wrap">
    <div id="container">
        <ul class="list">
             <li class="item-0">first item</li>
             <li class="item-1"><a href="link2.html">second item</a></li>
             <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li>
             <li class="item-1 active"><a href="link4.html">fourth item</a></li>
             <li class="item-0"><a href="link5.html">fifth item</a></li>
         </ul>
     </div>
 </div>
'''
from pyquery import PyQuery as pq
doc = pq(html)
items = doc('.list')
parents = items.parents()
print(type(parents))
print(parents)

结果如下:从结果我们可以看出返回了两部分内容,一个是的父节点的信息,一个是父节点的父节点的信息即祖先节点的信息

同样我们通过.parents查找的时候也可以添加css选择器来进行内容的筛选

兄弟元素
siblings

html = '''
<div class="wrap">
    <div id="container">
        <ul class="list">
             <li class="item-0">first item</li>
             <li class="item-1"><a href="link2.html">second item</a></li>
             <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li>
             <li class="item-1 active"><a href="link4.html">fourth item</a></li>
             <li class="item-0"><a href="link5.html">fifth item</a></li>
         </ul>
     </div>
 </div>
'''
from pyquery import PyQuery as pq
doc = pq(html)
li = doc('.list .item-0.active')
print(li.siblings())

代码中doc('.list .item-0.active') 中的.tem-0和.active是紧挨着的,所以表示是并的关系,这样满足条件的就剩下一个了:thired item的那个标签了
这样在通过.siblings就可以获取所有的兄弟标签,当然这里是不包括自己的
同样的在.siblings()里也是可以通过CSS选择器进行筛选

遍历

单个元素

html = '''
<div class="wrap">
    <div id="container">
        <ul class="list">
             <li class="item-0">first item</li>
             <li class="item-1"><a href="link2.html">second item</a></li>
             <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li>
             <li class="item-1 active"><a href="link4.html">fourth item</a></li>
             <li class="item-0"><a href="link5.html">fifth item</a></li>
         </ul>
     </div>
</div>
'''
from pyquery import PyQuery as pq
doc = pq(html)
li = doc('.item-0.active')
print(li)

lis = doc('li').items()
print(type(lis))
for li in lis:
    print(type(li))
    print(li)

运行结果如下:从结果中我们可以看出通过items()可以得到一个生成器,并且我们通过for循环得到的每个元素依然是一个pyquery对象。

获取信息

获取属性
pyquery对象.attr(属性名)
pyquery对象.attr.属性名

html = '''
<div class="wrap">
    <div id="container">
        <ul class="list">
             <li class="item-0">first item</li>
             <li class="item-1"><a href="link2.html">second item</a></li>
             <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li>
             <li class="item-1 active"><a href="link4.html">fourth item</a></li>
             <li class="item-0"><a href="link5.html">fifth item</a></li>
         </ul>
     </div>
 </div>
'''
from pyquery import PyQuery as pq
doc = pq(html)
a = doc('.item-0.active a')
print(a)
print(a.attr('href'))
print(a.attr.href)

所以这里我们也可以知道获得属性值的时候可以直接a.attr(属性名)或者a.attr.属性名

获取文本
在很多时候我们是需要获取被html标签包含的文本信息,通过.text()就可以获取文本信息

html = '''
<div class="wrap">
    <div id="container">
        <ul class="list">
             <li class="item-0">first item</li>
             <li class="item-1"><a href="link2.html">second item</a></li>
             <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li>
             <li class="item-1 active"><a href="link4.html">fourth item</a></li>
             <li class="item-0"><a href="link5.html">fifth item</a></li>
         </ul>
     </div>
 </div>
'''
from pyquery import PyQuery as pq
doc = pq(html)
a = doc('.item-0.active a')
print(a)
print(a.text())

结果如下:

获取html
我们通过.html()的方式可以获取当前标签所包含的html信息,例子如下:

html = '''
<div class="wrap">
    <div id="container">
        <ul class="list">
             <li class="item-0">first item</li>
             <li class="item-1"><a href="link2.html">second item</a></li>
             <li class="item-0 active"><a href="link3.html"><span class="bold">third item</span></a></li>
             <li class="item-1 active"><a href="link4.html">fourth item</a></li>
             <li class="item-0"><a href="link5.html">fifth item</a></li>
         </ul>
     </div>
 </div>
'''
from pyquery import PyQuery as pq
doc = pq(html)
li = doc('.item-0.active')
print(li)
print(li.html())

结果如下:

DOM操作

所有的努力都值得期许,每一份梦想都应该灌溉!
目录
相关文章
|
6天前
|
数据采集 存储 XML
Python爬虫定义入门知识
Python爬虫是用于自动化抓取互联网数据的程序。其基本概念包括爬虫、请求、响应和解析。常用库有Requests、BeautifulSoup、Scrapy和Selenium。工作流程包括发送请求、接收响应、解析数据和存储数据。注意事项包括遵守Robots协议、避免过度请求、处理异常和确保数据合法性。Python爬虫强大而灵活,但使用时需遵守法律法规。
|
7天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
8天前
|
数据采集 Web App开发 监控
高效爬取B站评论:Python爬虫的最佳实践
高效爬取B站评论:Python爬虫的最佳实践
|
8天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
26 4
|
8天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
19 2
|
7天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
15天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
59 6
|
16天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
39 4
|
3月前
|
数据采集 存储 中间件
Python进行网络爬虫:Scrapy框架的实践
【8月更文挑战第17天】网络爬虫是自动化程序,用于从互联网收集信息。Python凭借其丰富的库和框架成为构建爬虫的首选语言。Scrapy作为一款流行的开源框架,简化了爬虫开发过程。本文介绍如何使用Python和Scrapy构建简单爬虫:首先安装Scrapy,接着创建新项目并定义爬虫,指定起始URL和解析逻辑。运行爬虫可将数据保存为JSON文件或存储到数据库。此外,Scrapy支持高级功能如中间件定制、分布式爬取、动态页面渲染等。在实践中需遵循最佳规范,如尊重robots.txt协议、合理设置爬取速度等。通过本文,读者将掌握Scrapy基础并了解如何高效地进行网络数据采集。
202 6
|
3月前
|
数据采集 存储 JSON
Python爬虫开发:BeautifulSoup、Scrapy入门
在现代网络开发中,网络爬虫是一个非常重要的工具。它可以自动化地从网页中提取数据,并且可以用于各种用途,如数据收集、信息聚合和内容监控等。在Python中,有多个库可以用于爬虫开发,其中BeautifulSoup和Scrapy是两个非常流行的选择。本篇文章将详细介绍这两个库,并提供一个综合详细的例子,展示如何使用它们来进行网页数据爬取。