关于Python3中venv虚拟环境

简介: Python3.3以上的版本通过venv模块原生支持虚拟环境,可以代替Python之前的virtualenv。 该venv模块提供了创建轻量级“虚拟环境”,提供与系统Python的隔离支持。每一个虚拟环境都有其自己的Python二进制(允许有不同的Python版本创作环境),并且可以拥有自己独立的一套Python包。

Python3.3以上的版本通过venv模块原生支持虚拟环境,可以代替Python之前的virtualenv。

该venv模块提供了创建轻量级“虚拟环境”,提供与系统Python的隔离支持。每一个虚拟环境都有其自己的Python二进制(允许有不同的Python版本创作环境),并且可以拥有自己独立的一套Python包。他最大的好处是,可以让每一个python项目单独使用一个环境,而不会影响python系统环境,也不会影响其他项目的环境。

优点

  1. 使不同应用开发环境独立
  2. 环境升级不影响其他应用,也不会影响全局的python环境
  3. 防止系统中出现包管理混乱和版本冲突

windows创建虚拟环境

安装好的python3的环境,我的python版本是python3.5

我这里演示例子是在c盘根目录建立一个py3目录
进入到这个py3目录

创建虚拟环境
python -m evnv .

命令执行完成会在py3目录下看到如下文件

激活虚拟环境
还是在windows cmd下操作:
进入到Scripts,执行activate.bat,如下图表示激活成功

这个时候可以在虚拟环境进入到python3并安装我们需要的包而不会影响我们系统安装的python3的包环境,这里我在虚拟环境中安装了pymysql包,然后分别在虚拟环境和外面的环境中pip list列出包,可以看到,我们外面的包中并没有pymysql包

这样一个虚拟环境我们就配置好了

Mac或linux创建虚拟环境

其实三个平台的方法没什么太大区别,这里通过Mac系统演示,python环境依然是python3.5

还是创建一个py3目录,然后进入到py3目录

localhost:py3 zhaofan$ pwd
/Users/zhaofan/py3

创建虚拟环境

python3 -m venv .

激活虚拟环境

source bin/activate

如下图:

这样虚拟环境就创建完成

 

所有的努力都值得期许,每一份梦想都应该灌溉!
目录
相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
268 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
12天前
|
机器学习/深度学习 数据可视化 Docker
Python环境
Python环境
24 3
|
22天前
|
弹性计算 Linux iOS开发
Python 虚拟环境全解:轻松管理项目依赖
本文详细介绍了 Python 虚拟环境的概念、创建和使用方法,包括 `virtualenv` 和 `venv` 的使用,以及最佳实践和注意事项。通过虚拟环境,你可以轻松管理不同项目的依赖关系,避免版本冲突,提升开发效率。
|
1月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
331 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
|
1月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
402 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
1月前
|
机器学习/深度学习 缓存 Linux
python环境学习:pip介绍,pip 和 conda的区别和联系。哪个更好使用?pip创建虚拟环境并解释venv模块,pip的常用命令,conda的常用命令。
本文介绍了Python的包管理工具pip和环境管理器conda的区别与联系。pip主要用于安装和管理Python包,而conda不仅管理Python包,还能管理其他语言的包,并提供强大的环境管理功能。文章还讨论了pip创建虚拟环境的方法,以及pip和conda的常用命令。作者推荐使用conda安装科学计算和数据分析包,而pip则用于安装无法通过conda获取的包。
84 0
|
1月前
|
机器学习/深度学习 Unix 开发者
python的环境管理工具有哪些
python的环境管理工具有哪些
23 0
|
Python Windows
[Python]搭建虚拟环境与Django项目的创建[virtualenv virtualenvwrapper venv](Windows)(上)
[Python]搭建虚拟环境与Django项目的创建[virtualenv virtualenvwrapper venv](Windows)(上)
|
6月前
|
Ubuntu Python
一键打包,随时运行,Python3项目虚拟环境一键整合包的制作(Venv)
之前我们介绍了[如何使用嵌入式 Python3 环境给项目制作一键整合包](https://v3u.cn/a_id_328),在使用嵌入式 Python 环境时,通常是作为另一个应用程序的一部分,而Python3虚拟环境是为了在开发过程中隔离项目所需的 Python 环境。虚拟环境允许我们在同一台计算机上的不同项目中使用不同的 Python 版本和软件包,而不会相互干扰。 本次我们利用Python3自带的虚拟环境(venv)功能来给项目制作一键整合包。
一键打包,随时运行,Python3项目虚拟环境一键整合包的制作(Venv)
|
测试技术 数据库 Python
[Python]搭建虚拟环境与Django项目的创建[virtualenv virtualenvwrapper venv](Windows)(下)
[Python]搭建虚拟环境与Django项目的创建[virtualenv virtualenvwrapper venv](Windows)(下)
下一篇
无影云桌面