Python并发编程协程(Coroutine)之Gevent

简介: Gevent官网文档地址:http://www.gevent.org/contents.html 基本概念 我们通常所说的协程Coroutine其实是corporate routine的缩写,直接翻译为协同的例程,一般我们都简称为协程。

Gevent官网文档地址:http://www.gevent.org/contents.html

基本概念

我们通常所说的协程Coroutine其实是corporate routine的缩写,直接翻译为协同的例程,一般我们都简称为协程。

在linux系统中,线程就是轻量级的进程,而我们通常也把协程称为轻量级的线程即微线程。

进程和协程

下面对比一下进程和协程的相同点和不同点:

相同点:
我们都可以把他们看做是一种执行流,执行流可以挂起,并且后面可以在你挂起的地方恢复执行,这实际上都可以看做是continuation,关于这个我们可以通过在linux上运行一个hello程序来理解:

shell进程和hello进程:

  1. 开始,shell进程在运行,等待命令行的输入
  2. 执行hello程序,shell通过系统调用来执行我们的请求,这个时候系统调用会讲控制权传递给操作系统。操作系统保存shell进程的上下文,创建一个hello进程以及其上下文并将控制权给新的hello进程。
  3. hello进程终止后,操作系统恢复shell进程的上下文,并将控制权传回给shell进程
  4. shell进程继续等待下个命令的输入

当我们挂起一个执行流的时,我们要保存的东西:

  1. 栈, 其实在你切换前你的局部变量,以及要函数的调用都需要保存,否则都无法恢复
  2. 寄存器状态,这个其实用于当你的执行流恢复后要做什么

而寄存器和栈的结合就可以理解为上下文,上下文切换的理解:
CPU看上去像是在并发的执行多个进程,这是通过处理器在进程之间切换来实现的,操作系统实现这种交错执行的机制称为上下文切换

操作系统保持跟踪进程运行所需的所有状态信息。这种状态,就是上下文。
在任何一个时刻,操作系统都只能执行一个进程代码,当操作系统决定把控制权从当前进程转移到某个新进程时,就会进行上下文切换,即保存当前进程的上下文,恢复新进程的上下文,然后将控制权传递到新进程,新进程就会从它上次停止的地方开始。

不同点:

  1. 执行流的调度者不同,进程是内核调度,而协程是在用户态调度,也就是说进程的上下文是在内核态保存恢复的,而协程是在用户态保存恢复的,很显然用户态的代价更低
  2. 进程会被强占,而协程不会,也就是说协程如果不主动让出CPU,那么其他的协程,就没有执行的机会。
  3. 对内存的占用不同,实际上协程可以只需要4K的栈就足够了,而进程占用的内存要大的多
  4. 从操作系统的角度讲,多协程的程序是单进程,单协程

线程和协程

既然我们上面也说了,协程也被称为微线程,下面对比一下协程和线程:

  1. 线程之间需要上下文切换成本相对协程来说是比较高的,尤其在开启线程较多时,但协程的切换成本非常低。
  2. 同样的线程的切换更多的是靠操作系统来控制,而协程的执行由我们自己控制

我们通过下面的图更容易理解:

从上图可以看出,协程只是在单一的线程里不同的协程之间切换,其实和线程很像,线程是在一个进程下,不同的线程之间做切换,这也可能是协程称为微线程的原因吧

继续分析协程:

Gevent

Gevent是一种基于协程的Python网络库,它用到Greenlet提供的,封装了libevent事件循环的高层同步API。它让开发者在不改变编程习惯的同时,用同步的方式写异步I/O的代码。

使用Gevent的性能确实要比用传统的线程高,甚至高很多。但这里不得不说它的一个坑:

  1. Monkey-patching,我们都叫猴子补丁,因为如果使用了这个补丁,Gevent直接修改标准库里面大部分的阻塞式系统调用,包括socket、ssl、threading和 select等模块,而变为协作式运行。但是我们无法保证你在复杂的生产环境中有哪些地方使用这些标准库会由于打了补丁而出现奇怪的问题
  2. 第三方库支持。得确保项目中用到其他用到的网络库也必须使用纯Python或者明确说明支持Gevent

既然Gevent用的是Greenlet,我们通过下图来理解greenlet:

每个协程都有一个parent,最顶层的协程就是man thread或者是当前的线程,每个协程遇到IO的时候就把控制权交给最顶层的协程,它会看那个协程的IO event已经完成,就将控制权给它。

下面是greenlet一个例子

 1 from greenlet import greenlet
 2 
 3 def test1(x,y):
 4     z = gr2.switch(x+y)
 5     print(z)
 6 
 7 
 8 def test2(u):
 9     print(u)
10     gr1.switch(42)
11 
12 
13 gr1 = greenlet(test1)
14 gr2 = greenlet(test2)
15 
16 
17 gr1.switch("hello",'world')

greenlet(run=None, parent=None): 创建一个greenlet实例.
gr.parent:每一个协程都有一个父协程,当前协程结束后会回到父协程中执行,该 属性默认是创建该协程的协程.
gr.run: 该属性是协程实际运行的代码. run方法结束了,那么该协程也就结束了.
gr.switch(*args, **kwargs): 切换到gr协程.
gr.throw(): 切换到gr协程,接着抛出一个异常.

下面是gevent的一个例子:

 1 import gevent
 2 
 3 def func1():
 4     print("start func1")
 5     gevent.sleep(1)
 6     print("end func1")
 7 
 8 
 9 def func2():
10     print("start func2")
11     gevent.sleep(1)
12     print("end func2")
13 
14 gevent.joinall(
15     [
16         gevent.spawn(func1),
17         gevent.spawn(func2)
18     ]
19 )

关于gevent中队列的使用

gevent中也有自己的队列,但是有一个场景我用的过程中发现一个问题,就是如果我在协程中通过这个q来传递数据,如果对了是空的时候,从队列获取数据的那个协程就会被切换到另外一个协程中,这个协程用于往队列里put放入数据,问题就出在,gevent不认为这个放入数据为IO操作,并不会切换到上一个协程中,会把这个协程的任务完成后在切换到另外一个协程。我原本想要实现的效果是往对了放入数据后就会切换到get的那个协程。(或许我这里理解有问题)下面是测试代码:

 1 import gevent
 2 from gevent.queue import Queue
 3 
 4 
 5 def func():
 6     for i in range(10):
 7 
 8         print("int the func")
 9         q.put("test")
10 
11 def func2():
12     for i in range(10):
13         print("int the func2")
14         res = q.get()
15         print("--->",res)
16 
17 q = Queue()
18 gevent.joinall(
19     [
20         gevent.spawn(func2),
21         gevent.spawn(func),
22     ]
23 )

这段代码的运行效果为:

如果我在fun函数的q.put("test")后面添加gevent.sleep(0),就会是如下效果:

原本我预测的在不修改代码的情况下就应该是第二个图的结果,但是实际却是第一个图的结果(这个问题可能是我自己没研究明白,后面继续研究)

关于Gevent的问题

就像我上面说的gevent和第三方库配合使用会有一些问题,可以总结为:
python协程的库可以直接monkey path 
C写成的库可以采用豆瓣开源的greenify来打patch(这个功能自己准备后面做测试)

不过总的来说gevent目前为止还是有很多缺陷,并且不是官网标准库,而在python3中有一个官网正在做并且在3.6中已经稳定的库asyncio,这也是一个非常具有野心的库,非常建议学习,我也准备后面深入了解

所有的努力都值得期许,每一份梦想都应该灌溉!
目录
相关文章
|
23天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
1月前
|
数据采集 消息中间件 Java
python并发编程:什么是并发编程?python对并发编程有哪些支持?
并发编程能够显著提升程序的效率和响应速度。例如,网络爬虫通过并发下载将耗时从1小时缩短至20分钟;APP页面加载时间从3秒优化到200毫秒。Python支持多线程、多进程、异步I/O和协程等并发编程方式,适用于不同场景。线程通信方式包括共享变量、消息传递和同步机制,如Lock、Queue等。Python的并发编程特性使其在处理大规模数据和高并发访问时表现出色,成为许多领域的首选语言。
|
2月前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
52 14
|
2月前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
116 2
|
2月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
126 80
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
人工智能 数据挖掘 开发者
探索Python编程之美:从基础到进阶
本文是一篇深入浅出的Python编程指南,旨在帮助初学者理解Python编程的核心概念,并引导他们逐步掌握更高级的技术。文章不仅涵盖了Python的基础语法,还深入探讨了面向对象编程、函数式编程等高级主题。通过丰富的代码示例和实践项目,读者将能够巩固所学知识,提升编程技能。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考和启示。让我们一起踏上Python编程的美妙旅程吧!
|
2月前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
65 10
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
IDE 程序员 开发工具
Python编程入门:打造你的第一个程序
迈出编程的第一步,就像在未知的海洋中航行。本文是你启航的指南针,带你了解Python这门语言的魅力所在,并手把手教你构建第一个属于自己的程序。从安装环境到编写代码,我们将一步步走过这段旅程。准备好了吗?让我们开始吧!

热门文章

最新文章

推荐镜像

更多