一文读懂支持向量积核函数(附公式)

简介:

核函数(Kernels)

考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格。

假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来逼近这些样本点。

那么首先需要将特征x扩展到三维,然后寻找特征和结果之间的模型。我们将这种特征变换称作特征映射(feature mapping)。映射函数称作,在这个例子中


我们希望将得到的特征映射后的特征应用于SVM分类,而不是最初的特征。这样,我们需要将前面公式中的内积从,映射到

至于为什么需要映射后的特征而不是最初的特征来参与计算,上面提到的(为了更好地拟合)是其中一个原因,另外的一个重要原因是样例可能存在线性不可分的情况,而将特征映射到高维空间后,往往就可分了。(在《数据挖掘导论》Pang-Ning Tan等人著的《支持向量机》那一章有个很好的例子说明)

将核函数形式化定义,如果原始特征内积是,映射后为,那么定义核函数(Kernel)为到这里,我们可以得出结论,如果要实现该节开头的效果,只需先计算,然后计算即可,然而这种计算方式是非常低效的。

比如最初的特征是n维的,我们将其映射到维,然后再计算,这样需要的时间。那么我们能不能想办法减少计算时间呢?

先看一个例子,假设x和z都是n维的,展开后,得


这个时候发现我们可以只计算原始特征x和z内积的平方(时间复杂度是O(n)),就等价与计算映射后特征的内积。也就是说我们不需要花时间了。

现在看一下映射函数(n=3时),根据上面的公式,得到


也就是说核函数只能在选择这样的作为映射函数时才能够等价于映射后特征的内积。


再看一个核函数



对应的映射函数(n=3时)是


更一般地,核函数对应的映射后特征维度为

由于计算的是内积,我们可以想到IR中的余弦相似度,如果x和z向量夹角越小,那么核函数值越大,反之,越小。因此,核函数值是的相似度。

再看另外一个核函数


这时,如果x和z很相近(),那么核函数值为1,如果x和z相差很大(),那么核函数值约等于0。

由于这个函数类似于高斯分布,因此称为高斯核函数,也叫做径向基函数(Radial Basis Function 简称RBF)。它能够把原始特征映射到无穷维。

既然高斯核函数能够比较x和z的相似度,并映射到0到1,回想logistic回归,sigmoid函数可以,因此还有sigmoid核函数等等。

下面有张图说明在低维线性不可分时,映射到高维后就可分了,使用高斯核函数。


来自Eric Xing的slides

注意,使用核函数后,怎么分类新来的样本呢?线性的时候我们使用SVM学习出w和b,新来样本x的话,我们使用来判断,如果值大于等于1,那么是正类,小于等于是负类。

在两者之间,认为无法确定。如果使用了核函数后,就变成了,是否先要找到,然后再预测?答案肯定不是了,找很麻烦,回想我们之前说过的


只需将替换成,然后值的判断同上。

核函数有效性判定

问题:给定一个函数K,我们能否使用K来替代计算,也就说,是否能够找出一个,使得对于所有的x和z,都有

比如给出了,是否能够认为K是一个有效的核函数。

下面来解决这个问题,给定m个训练样本,每一个对应一个特征向量。

那么,我们可以将任意两个带入K中,计算得到。I可以从1到m,j可以从1到m,这样可以计算出m*m的核函数矩阵(Kernel Matrix)。

为了方便,我们将核函数矩阵和都使用K来表示。

如果假设K是有效地核函数,那么根据核函数定义


可见,矩阵K应该是个对称阵。让我们得出一个更强的结论,首先使用符号来表示映射函数的第k维属性值。那么对于任意向量z,得


最后一步和前面计算时类似。从这个公式我们可以看出,如果K是个有效的核函数(即等价),那么,在训练集上得到的核函数矩阵K应该是半正定的(

这样我们得到一个核函数的必要条件:

K是有效的核函数 ==> 核函数矩阵K是对称半正定的。

可幸的是,这个条件也是充分的,由Mercer定理来表达。

Mercer定理:

如果函数K是上的映射(也就是从两个n维向量映射到实数域)。那么如果K是一个有效核函数(也称为Mercer核函数),那么当且仅当对于训练样例,其相应的核函数矩阵是对称半正定的。

Mercer定理表明为了证明K是有效的核函数,那么我们不用去寻找,而只需要在训练集上求出各个,然后判断矩阵K是否是半正定(使用左上角主子式大于等于零等方法)即可。

许多其他的教科书在Mercer定理证明过程中使用了范数和再生希尔伯特空间等概念,但在特征是n维的情况下,这里给出的证明是等价的。

核函数不仅仅用在SVM上,但凡在一个模型后算法中出现了,我们都可以常使用去替换,这可能能够很好地改善我们的算法。


原文发布时间为:2018-01-29

本文来自云栖社区合作伙伴“ 数据派THU”,了解相关信息可以关注“数据派THU”微信公众号

相关文章
|
Cloud Native Linux 网络虚拟化
深入理解Linux veth虚拟网络设备:原理、应用与在容器化架构中的重要性
在Linux网络虚拟化领域,虚拟以太网设备(veth)扮演着至关重要的角色🌐。veth是一种特殊类型的网络设备,它在Linux内核中以成对的形式存在,允许两个网络命名空间之间的通信🔗。这篇文章将从多个维度深入分析veth的概念、作用、重要性,以及在容器和云原生环境中的应用📚。
深入理解Linux veth虚拟网络设备:原理、应用与在容器化架构中的重要性
|
数据挖掘 Shell 测试技术
怎么用Python解析HTML轻松搞定网页数据
**Python解析HTML摘要** 本文介绍了使用Python处理HTML的常见需求,如数据提取、网络爬虫和分析,并讨论了三种解析方法。正则表达式适用于简单匹配,但对复杂HTML不理想;BeautifulSoup提供简单API,适合多数情况;lxml结合XPath,适合处理大型复杂文档。示例展示了如何用这些方法提取链接。
604 2
|
移动开发 JavaScript 前端开发
项目中遇到的bug:elementui走马灯
大家应该都知道当走马灯轮播前两张图片和后两张图片的轮播方向和后面图片的方向不一致,就很尴尬。在网上查阅了好多博客基本都是手动添加两张图片,比如:[1,2]改成[2,1,2,1]。在项目中我们显然不可能把数据写死,这是不现实的。
288 0
|
4天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1112 2
|
3天前
|
机器学习/深度学习 人工智能 前端开发
通义DeepResearch全面开源!同步分享可落地的高阶Agent构建方法论
通义研究团队开源发布通义 DeepResearch —— 首个在性能上可与 OpenAI DeepResearch 相媲美、并在多项权威基准测试中取得领先表现的全开源 Web Agent。
584 11
|
13天前
|
人工智能 运维 安全
|
4天前
|
弹性计算 Kubernetes jenkins
如何在 ECS/EKS 集群中有效使用 Jenkins
本文探讨了如何将 Jenkins 与 AWS ECS 和 EKS 集群集成,以构建高效、灵活且具备自动扩缩容能力的 CI/CD 流水线,提升软件交付效率并优化资源成本。
305 0
|
11天前
|
人工智能 异构计算
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
B站开源IndexTTS2,用极致表现力颠覆听觉体验
在语音合成技术不断演进的背景下,早期版本的IndexTTS虽然在多场景应用中展现出良好的表现,但在情感表达的细腻度与时长控制的精准性方面仍存在提升空间。为了解决这些问题,并进一步推动零样本语音合成在实际场景中的落地能力,B站语音团队对模型架构与训练策略进行了深度优化,推出了全新一代语音合成模型——IndexTTS2 。
817 23

热门文章

最新文章