Pandas duplicated and drop_duplicates:查找并去除重复项

简介:


DataFrame.drop_duplicates(subset=None, keep='first', inplace=False)

method of pandas.core.frame.DataFrame instance Return DataFrame with duplicate(重复) rows removed, optionally only considering certain columns


 subset : column label or sequence of labels, optional 用来指定特定列,默认所有列

        Only consider certain columns for identifying duplicates, by default use all of the columns

    keep : {'first', 'last', False}, default 'first'去掉重复,默认保留第一次出现的

        - ``first`` : Drop duplicates except for the first occurrence.

        - ``last`` : Drop duplicates except for the last occurrence.

        - False : Drop all duplicates.

    inplace : boolean, default False 是否在原dataframe上修改还是保存一个副本

        Whether to drop duplicates in place or to return a copy

    

    Returns

    -------

    deduplicated : DataFrame



duplicated(subset=None, keep='first') method of pandas.core.frame.DataFrame instance Return boolean Series denoting duplicate rows, optionally only considering certain columns Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. Returns ------- duplicated : Series
目录
相关文章
|
3月前
|
数据处理 Python
Pandas中的drop_duplicates()方法详解
Pandas中的drop_duplicates()方法详解
186 2
|
7月前
|
人工智能 程序员 数据处理
Pandas数据处理3、DataFrame去重函数drop_duplicates()详解
Pandas数据处理3、DataFrame去重函数drop_duplicates()详解
168 0
Pandas数据处理3、DataFrame去重函数drop_duplicates()详解
|
存储 SQL 数据可视化
Python 之 Pandas merge() 函数、set_index() 函数、drop_duplicates() 函数和 tolist() 函数
Python 之 Pandas merge() 函数、set_index() 函数、drop_duplicates() 函数和 tolist() 函数
|
Python
Pandas 数据重复处理 duplicated()和drop_duplicates()
Pandas 数据重复处理 duplicated()和drop_duplicates()
119 0
Pandas 数据重复处理 duplicated()和drop_duplicates()
|
26天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
59 0
|
3月前
|
机器学习/深度学习 数据处理 Python
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
81 0
|
27天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
33 2
|
2月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
【Python篇】深入挖掘 Pandas:机器学习数据处理的高级技巧
87 3
|
2月前
|
数据采集 数据挖掘 API
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
在Python数据分析的世界里,Pandas和NumPy无疑是两颗璀璨的明星,它们为数据科学家和工程师提供了强大而灵活的工具集,用于处理、分析和探索数据。今天,我们将一起深入探索这两个库的高级功能,看看它们如何成为数据分析的加速器。
42 1
|
3月前
|
机器学习/深度学习 数据采集 监控
Pandas与Matplotlib:Python中的动态数据可视化
Pandas与Matplotlib:Python中的动态数据可视化