lucene正向索引(续)——域(Field)的元数据信息在.fnm里,在倒排表里,利用跳跃表,有利于大大提高搜索速度。

简介:

4.1.2. 域(Field)的元数据信息(.fnm)

一个段(Segment)包含多个域,每个域都有一些元数据信息,保存在.fnm文件中,.fnm文件的格式如下:

fnm

  • FNMVersion
    • 是fnm文件的版本号,对于Lucene 2.9为-2
  • FieldsCount
    • 域的数目
  • 一个数组的域(Fields)
    • FieldName:域名,如"title","modified","content"等。
    • FieldBits:一系列标志位,表明对此域的索引方式
      • 最低位:1表示此域被索引,0则不被索引。所谓被索引,也即放到倒排表中去。
        • 仅仅被索引的域才能够被搜到。
        • Field.Index.NO则表示不被索引。
        • Field.Index.ANALYZED则表示不但被索引,而且被分词,比如索引"hello world"后,无论是搜"hello",还是搜"world"都能够被搜到。
        • Field.Index.NOT_ANALYZED表示虽然被索引,但是不分词,比如索引"hello world"后,仅当搜"hello world"时,能够搜到,搜"hello"和搜"world"都搜不到。
        • 一个域除了能够被索引,还能够被存储,仅仅被存储的域是搜索不到的,但是能通过文档号查到,多用于不想被搜索到,但是在通过其它域能够搜索到的情况下,能够随着文档号返回给用户的域。
        • Field.Store.Yes则表示存储此域,Field.Store.NO则表示不存储此域。
      • 倒数第二位:1表示保存词向量,0为不保存词向量。
        • Field.TermVector.YES表示保存词向量。
        • Field.TermVector.NO表示不保存词向量。
      • 倒数第三位:1表示在词向量中保存位置信息。
        • Field.TermVector.WITH_POSITIONS
      • 倒数第四位:1表示在词向量中保存偏移量信息。
        • Field.TermVector.WITH_OFFSETS
      • 倒数第五位:1表示不保存标准化因子
        • Field.Index.ANALYZED_NO_NORMS
        • Field.Index.NOT_ANALYZED_NO_NORMS
      • 倒数第六位:是否保存payload

要了解域的元数据信息,还要了解以下几点:

  • 位置(Position)和偏移量(Offset)的区别
    • 位置是基于词Term的,偏移量是基于字母或汉字的。

clip_image002

  • 索引域(Indexed)和存储域(Stored)的区别
    • 一个域为什么会被存储(store)而不被索引(Index)呢?在一个文档中的所有信息中,有这样一部分信息,可能不想被索引从而可以搜索到,但是当这个文档由于其他的信息被搜索到时,可以同其他信息一同返回。
    • 举个例子,读研究生时,您好不容易写了一篇论文交给您的导师,您的导师却要他所第一作者而您做第二作者,然而您导师不想别人在论文系统中搜索您的名字时找到这篇论文,于是在论文系统中,把第二作者这个Field的Indexed设为false,这样别人搜索您的名字,永远不知道您写过这篇论文,只有在别人搜索您导师的名字从而找到您的文章时,在一个角落表述着第二作者是您。
  • payload的使用
    • 我们知道,索引是以倒排表形式存储的,对于每一个词,都保存了包含这个词的一个链表,当然为了加快查询速度,此链表多用跳跃表进行存储。
    • Payload信息就是存储在倒排表中的,同文档号一起存放,多用于存储与每篇文档相关的一些信息。当然这部分信息也可以存储域里(stored Field),两者从功能上基本是一样的,然而当要存储的信息很多的时候,存放在倒排表里,利用跳跃表,有利于大大提高搜索速度。
    • Payload的存储方式如下图:

payload

  •  
    • Payload主要有以下几种用法:
      • 存储每个文档都有的信息:比如有的时候,我们想给每个文档赋一个我们自己的文档号,而不是用Lucene自己的文档号。于是我们可以声明一个特殊的域(Field)"_ID"和特殊的词(Term)"_ID",使得每篇文档都包含词"_ID",于是在词"_ID"的倒排表里面对于每篇文档又有一项,每一项都有一个payload,于是我们可以在payload里面保存我们自己的文档号。每当我们得到一个Lucene的文档号的时候,就能从跳跃表中查找到我们自己的文档号。
//声明一个特殊的域和特殊的词 

public static final String ID_PAYLOAD_FIELD = "_ID";

public static final String ID_PAYLOAD_TERM = "_ID";

public static final Term ID_TERM = new Term(ID_PAYLOAD_TERM, ID_PAYLOAD_FIELD);

//声明一个特殊的TokenStream,它只生成一个词(Term),就是那个特殊的词,在特殊的域里面。

static class SinglePayloadTokenStream extends TokenStream { 
    private Token token; 
    private boolean returnToken = false;

    SinglePayloadTokenStream(String idPayloadTerm) { 
        char[] term = idPayloadTerm.toCharArray(); 
        token = new Token(term, 0, term.length, 0, term.length); 
    }

    void setPayloadValue(byte[] value) { 
        token.setPayload(new Payload(value)); 
        returnToken = true; 
    }

    public Token next() throws IOException { 
        if (returnToken) { 
            returnToken = false; 
            return token; 
        } else { 
            return null; 
        } 
    } 
}

//对于每一篇文档,都让它包含这个特殊的词,在特殊的域里面

SinglePayloadTokenStream singlePayloadTokenStream = new SinglePayloadTokenStream(ID_PAYLOAD_TERM); 
singlePayloadTokenStream.setPayloadValue(long2bytes(id)); 
doc.add(new Field(ID_PAYLOAD_FIELD, singlePayloadTokenStream));

//每当得到一个Lucene的文档号时,通过以下的方式得到payload里面的文档号 

long id = 0; 
TermPositions tp = reader.termPositions(ID_PAYLOAD_TERM); 
boolean ret = tp.skipTo(docID); 
tp.nextPosition(); 
int payloadlength = tp.getPayloadLength(); 
byte[] payloadBuffer = new byte[payloadlength]; 
tp.getPayload(payloadBuffer, 0); 
id = bytes2long(payloadBuffer); 
tp.close();

 

  •  
    •  
      • 影响词的评分
        • 在Similarity抽象类中有函数public float scorePayload(byte [] payload, int offset, int length)  可以根据payload的值影响评分。
  • 读取域元数据信息的代码如下:

 

FieldInfos.read(IndexInput, String)

  • int firstInt = input.readVInt();
  • size = input.readVInt();
  • for (int i = 0; i < size; i++)
    • String name = input.readString();
    • byte bits = input.readByte();
    • boolean isIndexed = (bits & IS_INDEXED) != 0;
    • boolean storeTermVector = (bits & STORE_TERMVECTOR) != 0;
    • boolean storePositionsWithTermVector = (bits & STORE_POSITIONS_WITH_TERMVECTOR) != 0;
    • boolean storeOffsetWithTermVector = (bits & STORE_OFFSET_WITH_TERMVECTOR) != 0;
    • boolean omitNorms = (bits & OMIT_NORMS) != 0;
    • boolean storePayloads = (bits & STORE_PAYLOADS) != 0;
    • boolean omitTermFreqAndPositions = (bits & OMIT_TERM_FREQ_AND_POSITIONS) != 0;












本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6394248.html ,如需转载请自行联系原作者


相关文章
|
存储 自然语言处理 算法
ES高频面试问题:一张图带你读懂 Elasticsearch 中“正排索引(正向索引)”和“倒排索引(反向索引)”区别
ES高频面试问题:一张图带你读懂 Elasticsearch 中“正排索引(正向索引)”和“倒排索引(反向索引)”区别
ES高频面试问题:一张图带你读懂 Elasticsearch 中“正排索引(正向索引)”和“倒排索引(反向索引)”区别
|
3月前
|
数据库 索引
联合索引和单独列索引哪个更好
【10月更文挑战第15天】联合索引和单独列索引哪个更好
86 2
|
8月前
|
分布式计算 Java Hadoop
MapReduce编程:检索特定群体搜索记录和定义分片操作
MapReduce编程:检索特定群体搜索记录和定义分片操作
75 0
|
关系型数据库 MySQL 索引
新增数据时,MySQL索引树的自调整过程
刚开始你一个表建好后,就一个数据页,就是聚簇索引的一部分,而且还是空的。若你插入数据,就是直接往这数据页里插入,也没必要给他弄索引页
120 0
|
缓存 NoSQL 搜索推荐
TairSearch:msearch实现索引分片搜索
TairSearch是Tair自主研发的高性能、低延时、基于内存的实时搜索引擎。在Tair中以key作为最小粒度的路由数据单位,TairSearch一个key对应的是搜索中的一个schema。如果一个schema中的文档数过多,则会导致在Tair中存在一个超大key,当文档数占用的总内存超过单节点的内存限制时,业务会出现oom等错误告警。众所周知,当缓存服务的单节点内存容量受限时,可通过变配成集群
332 0
TairSearch:msearch实现索引分片搜索
|
存储 SQL 算法
FAQ系列 | B+树索引和哈希索引的区别
FAQ系列 | B+树索引和哈希索引的区别
231 0
FAQ系列 | B+树索引和哈希索引的区别
|
SQL 存储 缓存
索引不是越多越好,理解索引结构原理,才有助于我们建立合适的索引!
MySQL支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此MySQL数据库支持多种索引类型,如BTree索引,哈希索引,全文索引等等。为了避免混乱,本文将只关注于BTree索引,因为这是平常使用MySQL时主要打交道的索引。
667 0
|
存储 SQL 缓存
B+树索引使用(9)分组、回表、覆盖索引(二十一)
B+树索引使用(9)分组、回表、覆盖索引(二十一)
|
存储 SQL 关系型数据库
如何优雅的给字段加索引,能引导优化器走索引?
大家好前面我们大概了解了MySQL为什么会选错索引。今天介绍一下如何巧妙的给字符串字段加索引提高查询性能。
如何优雅的给字段加索引,能引导优化器走索引?

热门文章

最新文章