ES BM25 TF-IDF相似度算法设置——

简介:

Before we move on from relevance and scoring, we will finish this chapter with a more advanced subject: pluggable similarity algorithms. While Elasticsearch uses the Lucene’s Practical Scoring Function as its default similarity algorithm, it supports other algorithms out of the box, which are listed in the Similarity Modules documentation.

Okapi BM25

The most interesting competitor to TF/IDF and the vector space model is called Okapi BM25, which is considered to be a state-of-the-art ranking function. BM25 originates from the probabilistic relevance model, rather than the vector space model, yet the algorithm has a lot in common with Lucene’s practical scoring function.

Both use term frequency, inverse document frequency, and field-length normalization, but the definition of each of these factors is a little different. Rather than explaining the BM25 formula in detail, we will focus on the practical advantages that BM25 offers.

Term-frequency saturation

Both TF/IDF and BM25 use inverse document frequency to distinguish between common (low value) words and uncommon (high value) words. Both also recognize (see Term frequency) that the more often a word appears in a document, the more likely is it that the document is relevant for that word.

However, common words occur commonly. The fact that a common word appears many times in one document is offset by the fact that the word appears many times in all documents.

However, TF/IDF was designed in an era when it was standard practice to remove the most common words (or stopwords, see Stopwords: Performance Versus Precision) from the index altogether. The algorithm didn’t need to worry about an upper limit for term frequency because the most frequent terms had already been removed.

In Elasticsearch, the standard analyzer—the default for string fields—doesn’t remove stopwords because, even though they are words of little value, they do still have some value. The result is that, for very long documents, the sheer number of occurrences of words like the and and can artificially boost their weight.

BM25, on the other hand, does have an upper limit. Terms that appear 5 to 10 times in a document have a significantly larger impact on relevance than terms that appear just once or twice. However, as can be seen in Figure 34, “Term frequency saturation for TF/IDF and BM25”, terms that appear 20 times in a document have almost the same impact as terms that appear a thousand times or more.

This is known as nonlinear term-frequency saturation.

Figure 34. Term frequency saturation for TF/IDF and BM25

Term frequency saturation for TF/IDF and BM25

Field-length normalization

In Field-length norm, we said that Lucene considers shorter fields to have more weight than longer fields: the frequency of a term in a field is offset by the length of the field. However, the practical scoring function treats all fields in the same way. It will treat all title fields (because they are short) as more important than all body fields (because they are long).

BM25 also considers shorter fields to have more weight than longer fields, but it considers each field separately by taking the average length of the field into account. It can distinguish between a shorttitle field and a long title field.

Caution

In Query-Time Boosting, we said that the title field has a natural boost over the bodyfield because of its length. This natural boost disappears with BM25 as differences in field length apply only within a single field.


    
摘自:https://www.elastic.co/guide/en/elasticsearch/guide/current/pluggable-similarites.html













本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6472820.html ,如需转载请自行联系原作者

相关文章
|
5天前
|
算法
有史以来最全的图像相似度算法
有史以来最全的图像相似度算法
7 0
|
6天前
|
算法
TF-IDF算法是什么呢?
TF-IDF(Term Frequency-Inverse Document Frequency)是一种常用于信息检索和文本挖掘的统计方法,用于评估一个词在文档集或一个语料库中的重要程度。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。
|
6天前
|
监控 算法 搜索推荐
科普一下Elasticsearch中BM25算法的使用
科普一下Elasticsearch中BM25算法的使用
95 0
|
6天前
|
自然语言处理 算法
文本分析-使用jieba库实现TF-IDF算法提取关键词
文本分析-使用jieba库实现TF-IDF算法提取关键词
109 1
|
6天前
|
机器学习/深度学习 自然语言处理 算法
基于TF-IDF+KMeans聚类算法构建中文文本分类模型(附案例实战)
基于TF-IDF+KMeans聚类算法构建中文文本分类模型(附案例实战)
191 1
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解TF-IDF、BM25算法与BM25变种:揭秘信息检索的核心原理与应用
深入理解TF-IDF、BM25算法与BM25变种:揭秘信息检索的核心原理与应用
|
9月前
|
算法 JavaScript
W3Cschool编程实战JS脚本算法挑战:设置首字母大写算法挑战
返回一个字符串,确保字符串的每个单词首字母都大写,其余部分小写。
62 0
|
9月前
|
自然语言处理 算法 搜索推荐
TF-IDF、TextRank关键字抽取排序算法
TF-IDF称为词频逆文本,结果严重依赖文本分词之后的效果。其公式又可以分成词频(Term Frequency,TF)的计算和逆文档概率(IDF)的计算。
101 0
|
10月前
|
人工智能 自然语言处理 算法
基于知识图谱的电影知识问答系统:训练TF-IDF 向量算法和朴素贝叶斯分类器、在 Neo4j 中查询
基于知识图谱的电影知识问答系统:训练TF-IDF 向量算法和朴素贝叶斯分类器、在 Neo4j 中查询
基于知识图谱的电影知识问答系统:训练TF-IDF 向量算法和朴素贝叶斯分类器、在 Neo4j 中查询
|
算法 搜索推荐 数据格式
基于用户的协同过滤算法(及3种计算用户相似度的方法)
本文参考《推荐系统实践》中基于用户的协同过滤算法内容。基于老师上课讲解,自己实现了其中的代码,了解了整个过程。
230 0