有史以来最全的图像相似度算法

简介: 有史以来最全的图像相似度算法

使用四种方法计算图片相似度:

MD5、直方图、PSNR、SSIM

import numpy as np
from PIL import Image
from skimage.metrics import structural_similarity
import cv2
import os
import hashlib
import math
 
'''
    粗暴的md5比较 返回是否完全相同
'''
def md5_similarity(img1_path, img2_path):
    file1 = open(img1_path, "rb")
    file2 = open(img2_path, "rb")
    md = hashlib.md5()
    md.update(file1.read())
    res1 = md.hexdigest()
    md = hashlib.md5()
    md.update(file2.read())
    res2 = md.hexdigest()
    return res1 == res2
 
def normalize(data):
    return data / np.sum(data)
 
'''
    直方图相似度
    相关性比较 cv2.HISTCMP_CORREL:值越大,相似度越高
    相交性比较 cv2.HISTCMP_INTERSECT:值越大,相似度越高
    卡方比较 cv2.HISTCMP_CHISQR:值越小,相似度越高
    巴氏距离比较 cv2.HISTCMP_BHATTACHARYYA:值越小,相似度越高
'''
def hist_similarity(img1, img2, hist_size=256):
    imghistb1 = cv2.calcHist([img1], [0], None, [hist_size], [0, 256])
    imghistg1 = cv2.calcHist([img1], [1], None, [hist_size], [0, 256])
    imghistr1 = cv2.calcHist([img1], [2], None, [hist_size], [0, 256])
 
    imghistb2 = cv2.calcHist([img2], [0], None, [hist_size], [0, 256])
    imghistg2 = cv2.calcHist([img2], [1], None, [hist_size], [0, 256])
    imghistr2 = cv2.calcHist([img2], [2], None, [hist_size], [0, 256])
 
    distanceb = cv2.compareHist(normalize(imghistb1), normalize(imghistb2), cv2.HISTCMP_CORREL)
    distanceg = cv2.compareHist(normalize(imghistg1), normalize(imghistg2), cv2.HISTCMP_CORREL)
    distancer = cv2.compareHist(normalize(imghistr1), normalize(imghistr2), cv2.HISTCMP_CORREL)
    meandistance = np.mean([distanceb, distanceg, distancer])
    return meandistance
 
def PSNR(img1, img2):
    mse = np.mean((img1/255. - img2/255.) ** 2)
    if mse == 0:
        return 100
    PIXEL_MAX = 1
    return 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
 
def SSIM(img1, img2):
    gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
    gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
    # 计算两个灰度图像之间的结构相似度
    score, diff = structural_similarity(gray1, gray2, win_size=101, full=True)
    # diff = (diff * 255).astype("uint8")
    # print("SSIM:{}".format(score))
    return score, diff
 
if __name__ == '__main__':
    img1_path = 'dui/1.png'
    img2_path = 'dui/2.png'
    img1 = cv2.imread(img1_path)
    img2 = cv2.imread(img2_path)
 
    # 1.粗暴的md5比较 返回是否完全相同
    print('md5_similarity:', md5_similarity(img1_path, img2_path))
    # 2.直方图相似度
    print('hist_similarity:', hist_similarity(img1, img2))
    # 3.PSNR
    print('PSNR:', PSNR(img1, img2))
    # 4.SSIM
    print('SSIM:', SSIM(img1, img2))
相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
3月前
|
机器学习/深度学习 人工智能 算法
【MM2024】面向 StableDiffusion 的多目标图像编辑算法 VICTORIA
阿里云人工智能平台 PAI 团队与华南理工大学合作在国际多媒体顶级会议 ACM MM2024 上发表 VICTORIA 算法,这是一种面向 StableDiffusion 的多目标图像编辑算法。VICTORIA 通过文本依存关系来修正图像编辑过程中的交叉注意力图,从而确保关系对象的一致性,支持用户通过修改描述性提示一次性编辑多个目标。
|
3月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
4月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
6月前
|
机器学习/深度学习 编解码 监控
算法金 | 深度学习图像增强方法总结
**图像增强技术概括** 图像增强聚焦于提升视觉效果和细节,广泛应用于医学、遥感等领域。空间域增强包括直方图均衡化(增强对比度)、对比度拉伸、灰度变换、平滑滤波(均值、中值)和锐化滤波(拉普拉斯、高通)。频率域增强利用傅里叶变换、小波变换,通过高频和低频滤波增强图像特征。现代方法涉及超分辨率重建、深度学习去噪(如CNN、Autoencoder)、图像修复(如GAN)和GANs驱动的多种图像处理任务。
217 14
算法金 | 深度学习图像增强方法总结
|
6月前
|
自然语言处理 算法 搜索推荐
字符串相似度算法完全指南:编辑、令牌与序列三类算法的全面解析与深入分析
在自然语言处理领域,人们经常需要比较字符串,这些字符串可能是单词、句子、段落甚至是整个文档。如何快速判断两个单词或句子是否相似,或者相似度是好还是差。这类似于我们使用手机打错一个词,但手机会建议正确的词来修正它,那么这种如何判断字符串相似度呢?本文将详细介绍这个问题。
339 1
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
|
6月前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
5月前
|
算法 前端开发 计算机视觉
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
57 0
|
5月前
|
自然语言处理 并行计算 算法
基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的具体实现
56 0