时序数据库深入浅出之存储篇——本质LSMtree,同时 metric(比如温度)+tags 分片

简介:

什么是时序数据库

先来介绍什么是时序数据。时序数据是基于时间的一系列的数据。在有时间的坐标中将这些数据点连成线,往过去看可以做成多纬度报表,揭示其趋势性、规律性、异常性;往未来看可以做大数据分析,机器学习,实现预测和预警。

时序数据库就是存放时序数据的数据库,并且需要支持时序数据的快速写入、持久化、多纬度的聚合查询等基本功能。

对比传统数据库仅仅记录了数据的当前值,时序数据库则记录了所有的历史数据。同时时序数据的查询也总是会带上时间作为过滤条件。

时序数据示例

p1- 北上广三地 2015 年气温变化图

p2- 北上广三地当前温度实时展现

下面介绍下时序数据库的一些基本概念(不同的时序数据库称呼略有不同)。

metric: 度量,相当于关系型数据库中的 table。

data point: 数据点,相当于关系型数据库中的 row。

timestamp:时间戳,代表数据点产生的时间。

field: 度量下的不同字段。比如位置这个度量具有经度和纬度两个 field。一般情况下存放的是会随着时间戳的变化而变化的数据。

tag: 标签,或者附加信息。一般存放的是并不随着时间戳变化的属性信息。timestamp 加上所有的 tags 可以认为是 table 的 primary key。

如下图,度量为 Wind,每一个数据点都具有一个 timestamp,两个 field:direction 和 speed,两个 tag:sensor、city。它的第一行和第三行,存放的都是 sensor 号码为 95D8-7913 的设备,属性城市是上海。随着时间的变化,风向和风速都发生了改变,风向从 23.4 变成 23.2;而风速从 3.4 变成了 3.3。

p3- 时序数据库基本概念图

 

时序数据库遇到的挑战

很多人可能认为在传统关系型数据库上加上时间戳一列就能作为时序数据库。数据量少的时候确实也没问题,但少量数据是展现的纬度有限,细节少,可置信低,更加不能用来做大数据分析。很明显时序数据库是为了解决海量数据场景而设计的。

可以看到时序数据库需要解决以下几个问题

  • 时序数据的写入:如何支持每秒钟上千万上亿数据点的写入。
  • 时序数据的读取:又如何支持在秒级对上亿数据的分组聚合运算。
  • 成本敏感:由海量数据存储带来的是成本问题。如何更低成本的存储这些数据,将成为时序数据库需要解决的重中之重。

这些问题不是用一篇文章就能涵盖的,同时每个问题都可以从多个角度去优化解决。在这里只从数据存储这个角度来尝试回答如何解决大数据量的写入和读取。

 

传统数据库存储采用的都是 B tree,这是由于其在查询和顺序插入时有利于减少寻道次数的组织形式。我们知道磁盘寻道时间是非常慢的,一般在 10ms 左右。磁盘的随机读写慢就慢在寻道上面。对于随机写入 B tree 会消耗大量的时间在磁盘寻道上,导致速度很慢。我们知道 SSD 具有更快的寻道时间,但并没有从根本上解决这个问题。

对于 90% 以上场景都是写入的时序数据库,B tree 很明显是不合适的。

业界主流都是采用 LSM tree 替换 B tree,比如 Hbase, Cassandra 等 nosql 中。

 

分片设计

分片设计简单来说就是以什么做分片,这是非常有技巧的,会直接影响写入读取的性能。

结合时序数据库的特点,根据 metric+tags 分片是比较好的一种方式,因为往往会按照一个时间范围查询,这样相同 metric 和 tags 的数据会分配到一台机器上连续存放,顺序的磁盘读取是很快的。再结合上面讲到的单机存储内容,可以做到快速查询。

进一步我们考虑时序数据时间范围很长的情况,需要根据时间范围再将分成几段,分别存储到不同的机器上,这样对于大范围时序数据就可以支持并发查询,优化查询速度。

如下图,第一行和第三行都是同样的 tag(sensor=95D8-7913;city= 上海),所以分配到同样的分片,而第五行虽然也是同样的 tag,但是根据时间范围再分段,被分到了不同的分片。第二、四、六行属于同样的 tag(sensor=F3CC-20F3;city= 北京)也是一样的道理。

p5- 时序数据分片说明

真实案例

下面我以一批开源时序数据库作为说明。

InfluxDB:

非常优秀的时序数据库,但只有单机版是免费开源的,集群版本是要收费的。从单机版本中可以一窥其存储方案:在单机上 InfluxDB 采取类似于 LSM tree 的存储结构 TSM;而分片的方案 InfluxDB 先通过+(事实上还要加上 retentionPolicy)确定 ShardGroup,再通过+的 hash code 确定到具体的 Shard。

Kairosdb:

底层使用 Cassandra 作为分布式存储引擎,如上文提到单机上采用的是 LSM tree。

OpenTsdb:

底层使用 Hbase 作为其分布式存储引擎,采用的也是 LSM tree。

Hbase 采用范围划分的分片方式。使用 row key 做分片,保证其全局有序。每个 row key 下可以有多个 column family。每个 column family 下可以有多个 column。

结束语

可以看到各分布式时序数据库虽然存储方案都略有不同,但本质上是一致的,由于时序数据写多读少的场景,在单机上采用更加适合大吞吐量写入的单机存储结构,而在分布式方案上根据时序数据的特点来精心设计,目标就是设计的分片方案能方便时序数据的写入和读取,同时使数据分布更加均匀,尽量避免热点的产生。



















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6928980.html,如需转载请自行联系原作者

目录
打赏
0
0
0
0
64
分享
相关文章
MySQL——数据库备份上传到阿里云OSS存储
MySQL——数据库备份上传到阿里云OSS存储
292 0
PolarDB开源数据库进阶课3 共享存储在线扩容
本文继续探讨穷鬼玩PolarDB RAC一写多读集群系列,介绍如何在线扩容共享存储。实验环境依赖《在Docker容器中用loop设备模拟共享存储》搭建。主要步骤包括:1) 扩容虚拟磁盘;2) 刷新loop设备容量;3) 使用PFS工具进行文件系统扩容;4) 更新数据库实例以识别新空间。通过这些步骤,成功将共享存储从20GB扩容至30GB,并确保所有节点都能使用新的存储空间。
24 1
时序数据库 TDengine 化工新签约:存储降本一半,查询提速十倍
化工行业在数字化转型过程中面临数据接入复杂、实时性要求高、系统集成难度大等诸多挑战。福州力川数码科技有限公司科技依托深厚的行业积累,精准聚焦行业痛点,并携手 TDengine 提供高效解决方案。
26 0
高效管理大型数据库:分片与复制的策略与实践
在当今数据驱动的世界中,管理和优化大型数据库系统是每个企业的关键任务。特别是在面对数据量迅速增长的情况下,如何确保系统的高可用性和性能成为重要挑战。本文探讨了两种核心技术——分片(Sharding)和复制(Replication),以及它们在实际应用中的策略与实践。通过对比这两种技术的优缺点,并结合具体案例分析,本文旨在为数据库管理员和开发者提供一套高效管理大型数据库的综合方案。
列式存储数据库与超市的关系?
列式存储数据库是一种高效的数据管理方式,类似于超市将相似商品集中摆放。它将相同类型的数据(如年龄、价格)归类存储,便于快速查询和压缩,广泛应用于市场分析、财务报告和健康数据分析等领域。知名产品包括HBase、ClickHouse、Druid和Apache Cassandra等,适合处理大规模数据和实时分析任务。
58 4
快速搭建南大通用GBase 8s数据库SSC共享存储集群
本文介绍如何GBase8s 数据库 在单机环境中快速部署SSC共享存储集群,涵盖准备工作、安装数据库、创建环境变量文件、准备数据存储目录、修改sqlhost、设置onconfig、搭建sds集群及集群检查等步骤,助你轻松完成集群功能验证。
服务器数据恢复—华为S5300存储Oracle数据库恢复案例
服务器存储数据恢复环境: 华为S5300存储中有12块FC硬盘,其中11块硬盘作为数据盘组建了一组RAID5阵列,剩下的1块硬盘作为热备盘使用。基于RAID的LUN分配给linux操作系统使用,存放的数据主要是Oracle数据库。 服务器存储故障: RAID5阵列中1块硬盘出现故障离线,热备盘自动激活开始同步数据,在同步数据的过程中又一块硬盘离线,RAID5阵列瘫痪,上层LUN无法使用。
PACS系统 中 dicom 文件在mysql 8.0 数据库中的 存储和读取(pydicom 库使用)
PACS系统 中 dicom 文件在mysql 8.0 数据库中的 存储和读取(pydicom 库使用)
118 2
支持配置审计日志的存储数据库
审计日志作为企业监管平台的重要依据,同时也是“等保三级”认证的必要考察项之一。Dataphin V4.3版本支持设置平台日志的存储数据源,帮助用户快速获取审计日志,同时介绍了不同部署模式的Dataphin如何查看审计日志的方法。
186 5
可以存储文件的数据库有哪些?
可以存储文件的数据库有哪些?
443 6
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等