numpy数据类型dtype转换

简介:

 

这篇文章我们玩玩numpy的数值数据类型转换

 

导入numpy

>>> import numpy as np

 

一、随便玩玩

生成一个浮点数组

>>> a = np.random.random(4)


看看信息

>>> a
array([ 0.0945377 ,  0.52199916,  0.62490646,  0.21260126])
>>> a.dtype
dtype('float64')
>>> a.shape
(4,)

 

改变dtype,发现数组长度翻倍!

复制代码
>>> a.dtype = 'float32'
>>> a
array([  3.65532693e+20,   1.43907535e+00,  -3.31994873e-25,
         1.75549972e+00,  -2.75686653e+14,   1.78122652e+00,
        -1.03207532e-19,   1.58760118e+00], dtype=float32)
>>> a.shape
(8,)
复制代码


改变dtype,数组长度再次翻倍!

复制代码
>>> a.dtype = 'float16'
>>> a
array([ -9.58442688e-05,   7.19000000e+02,   2.38159180e-01,
         1.92968750e+00,              nan,  -1.66034698e-03,
        -2.63427734e-01,   1.96875000e+00,  -1.07519531e+00,
        -1.19625000e+02,              nan,   1.97167969e+00,
        -1.60156250e-01,  -7.76290894e-03,   4.07226562e-01,
         1.94824219e+00], dtype=float16)
>>> a.shape
(16,)
复制代码


改变dtype='float',发现默认就是float64,长度也变回最初的4

复制代码
>>> a.dtype = 'float'
>>> a
array([ 0.0945377 ,  0.52199916,  0.62490646,  0.21260126])
>>> a.shape
(4,)
>>> a.dtype
dtype('float64')
复制代码


把a变为整数,观察其信息

>>> a.dtype = 'int64'
>>> a
array([4591476579734816328, 4602876970018897584, 4603803876586077261,
       4596827787908854048], dtype=int64)
>>> a.shape
(4,)


改变dtype,发现数组长度翻倍!

>>> a.dtype = 'int32'
>>> a
array([ 1637779016,  1069036447, -1764917584,  1071690807,  -679822259,
        1071906619, -1611419360,  1070282372])
>>> a.shape
(8,)


改变dtype,发现数组长度再次翻倍!

>>> a.dtype = 'int16'
>>> a
array([-31160,  24990,  13215,  16312,  32432, -26931, -19401,  16352,
       -17331, -10374,   -197,  16355, -20192, -24589,  13956,  16331], dtype=int16)
>>> a.shape
(16,)


改变dtype,发现数组长度再次翻倍!

复制代码
>>> a.dtype = 'int8'
>>> a
array([  72, -122,  -98,   97,  -97,   51,  -72,   63,  -80,  126,  -51,
       -106,   55,  -76,  -32,   63,   77,  -68,  122,  -41,   59,   -1,
        -29,   63,   32,  -79,  -13,  -97, -124,   54,  -53,   63], dtype=int8)
>>> a.shape
(32,)
复制代码


改变dtype,发现整数默认int32!

复制代码
>>> a.dtype = 'int'
>>> a.dtype
dtype('int32')
>>> a
array([ 1637779016,  1069036447, -1764917584,  1071690807,  -679822259,
        1071906619, -1611419360,  1070282372])
>>> a.shape
(8,)
复制代码

 

二、换一种玩法

很多时候我们用numpy从文本文件读取数据作为numpy的数组,默认的dtype是float64。
但是有些场合我们希望有些数据列作为整数。如果直接改dtype='int'的话,就会出错!原因如上,数组长度翻倍了!!!


下面的场景假设我们得到了导入的数据。我们的本意是希望它们是整数,但实际上是却是浮点数(float64)

>>> b = np.array([1., 2., 3., 4.])
>>> b.dtype
dtype('float64')

 

用 astype(int) 得到整数,并且不改变数组长度

复制代码
>>> c = b.astype(int)
>>> c
array([1, 2, 3, 4])
>>> c.shape
(8,)
>>> c.dtype dtype('int32')
复制代码

 

如果直接改变b的dtype的话,b的长度翻倍了,这不是我们想要的(当然如果你想的话)

复制代码
>>> b
array([ 1.,  2.,  3.,  4.])

>>> b.dtype = 'int'
>>> b.dtype
dtype('int32')
>>> b
array([         0, 1072693248,          0, 1073741824,          0,
       1074266112,          0, 1074790400])
>>> b.shape
(8,)
复制代码



三、结论

numpy中的数据类型转换,不能直接改原数据的dtype!  只能用函数astype()

 

本文转自罗兵博客园博客,原文链接:http://www.cnblogs.com/hhh5460/p/5129032.html ,如需转载请自行联系原作者
相关文章
|
存储 C语言 Python
NumPy 教程 之 NumPy 数据类型 10
NumPy的`dtype`对象详细描述数组数据,包括类型(如整数、浮点、对象)、大小、字节顺序和结构化字段信息。构造`dtype`时可指定对齐和是否复制。例如,定义一个结构化类型`student`含字符串`name`、整数`age`和浮点数`marks`,然后创建一个数组应用该类型,输出显示结构化数据内容。
123 5
|
存储 C语言 Python
NumPy 教程 之 NumPy 数据类型 11
NumPy的`dtype`对象详细描述数组数据的类型、大小、字节顺序及结构。它支持布尔、整数、浮点、复数、时间和日期类型等,与C语言类型相似。通过`numpy.dtype`构造,可指定对齐和复制。每个类型有唯一字符标识,如'b'代表布尔,'i'代表有符号整数,'f'代表浮点数,'c'代表复数,'S'和'U'表示字符串,'V'表示原始数据。字节顺序用'<'或'>'标记。
102 2
|
存储 C语言 Python
NumPy 教程 之 NumPy 数据类型 6
NumPy的`dtype`对象详细描述数组数据,包括类型(如整数、浮点数)、大小、字节顺序和结构化类型字段。构造`dtype`使用`numpy.dtype()`,参数可指定数据类型、对齐和复制选项。实例展示了创建结构化类型`dt`,含一个`int8`类型的'age'字段,输出为`[('age', 'i1')]`。
72 1
|
C语言 索引 Python
NumPy 教程 之 NumPy 数据类型 1
NumPy 提供丰富数据类型,如 bool_、int_(类似 C 的 long)、intc、intp(用于索引)、int8-64 和 uint8-64(无符号整数)。浮点型有 float16-64,以及复数类型 complex64 和 complex128。每个类型对应特定字节数和精度。dtype 对象代表这些类型。
137 1
|
存储 C语言 Python
NumPy 教程 之 NumPy 数据类型 9
NumPy的`dtype`对象详细描述数组数据,包括类型(如整数、浮点数)、大小、字节顺序和结构化类型字段。可通过`numpy.dtype()`创建,参数包括数据类型对象、对齐标志和复制选项。例如,定义一个结构化类型`student`,含`name`(字符串)、`age`(整数)和`marks`(浮点数)字段,展示了如何应用到数组。打印`student`显示字段及其类型。
119 0
|
存储 C语言 Python
NumPy 教程 之 NumPy 数据类型 3
NumPy 扩展了Python的数据类型,提供dtype对象描述数组内存布局,包括数据类型、大小、字节顺序等。dtype通过`numpy.dtype()`创建,如`np.dtype(np.int32)`,并支持结构化类型和子数组。字节顺序用`<`(小端)或`>`(大端)指定。
92 0
|
存储 Python
NumPy数据类型与转换指南
【4月更文挑战第17天】NumPy是Python的数值计算库,提供多种数据类型如整数(int8, int32等),浮点数(float16, float64等),复数(complex64, complex128)和布尔(bool)。使用`astype()`方法可转换数组数据类型,例如`int_array.astype(np.float64)`。NumPy还会在运算中自动进行类型转换。注意转换可能涉及数据丢失、精度降低及性能影响,需根据需求谨慎选择数据类型。
|
存储 索引 Python
NumPy 数组切片及数据类型介绍
了解 NumPy 数组切片,用于从数组中提取子集。一维数组切片使用 `start:end:step`,如 `arr[1:5]`。二维数组切片如 `arr[1:3, 0:3]`。创建 5x5 数组并练习切片,例如打印第一行、第二列、对角线元素和 2x2 子数组。别忘了检查数据类型,如 `arr.dtype`,并使用 `astype()` 转换类型。
202 0
|
存储 数据采集 数据挖掘
《Numpy 简易速速上手小册》第2章:Numpy 数据类型和数组构造(2024 最新版)
《Numpy 简易速速上手小册》第2章:Numpy 数据类型和数组构造(2024 最新版)
161 0
|
存储 机器学习/深度学习 数据挖掘
自定义数据类型与NumPy结构数组详解
【4月更文挑战第17天】本文详细介绍了NumPy中的自定义数据类型和结构数组。通过`numpy.dtype`可创建自定义数据类型,如示例中的包含整数和浮点数字段的数组。结构数组能存储不同类型的元素,每行作为一个记录,包含多个字段。创建结构数组时,定义字段及其数据类型,然后通过字段名进行访问和操作。掌握这些技术能提升数据处理效率和灵活性,尤其在科学计算和数据分析领域。

热门文章

最新文章