新年快乐!这是份值得收藏的2017年AI与深度学习要点大全

简介:
本文来自AI新媒体量子位(QbitAI)

2017已经正式离我们远去。

过去的一年里,有很多值得梳理记录的内容。博客WILDML的作者、曾在Google Brain做了一年Resident的Denny Britz,就把他眼中的2017年AI和深度学习的大事,进行了一番梳理汇总。

量子位进行概要摘录如下,详情可前往原文查看,地址:http://www.wildml.com/2017/12/ai-and-deep-learning-in-2017-a-year-in-review/

强化学习称霸人类游戏

如果说2016年AlphaGo击败李世乭之后,大家对它的棋坛地位还有些许怀疑的话,2017年击败柯洁,让它成了毫无疑问的围棋霸主。

作为一个强化学习Agent,它的第一个版本使用了来自人类专家的训练数据,然后通过自我对局和蒙特卡洛树搜索的改进来进化。

不久之后,AlphaGo Zero更进一步,使用了之前一篇论文Thinking Fast and Slow with Deep Learning and Tree Search提出的技术,从零开始下围棋,在训练中没有用到人类对局的数据。

临近年底,我们又看到了新一代的AlphaGo:AlphaZero,在围棋之后,用同样的技术搞定了国际象棋和日本将棋。

这些算法在对局中所用的策略,有时候甚至让经验丰富的棋手都觉得惊讶,他们也会向AlphaGo学习,改变着自己的对局风格。为了让学习更容易,DeepMind还发布了AlphaGo Teach工具。


下面是相关论文,认真的同学们可以收藏回顾啦:

AlphaGo
https://storage.googleapis.com/deepmind-media/alphago/AlphaGoNaturePaper.pdf

AlphaGo Zero
https://www.nature.com/articles/nature24270.epdf

AlphaZero
https://arxiv.org/abs/1712.01815

Thinking Fast and Slow with Deep Learning and Tree Search
https://arxiv.org/abs/1705.08439

AI今年取得重大进展的游戏不止围棋。CMU研究人员的Libratus(冷扑大师)在20天的一对一无限注德州扑克比赛中,击败了人类顶级扑克玩家。

再早些时候,查尔斯大学、捷克技术大学和加拿大阿尔伯塔大学开发的DeepStack,首先击败了专业德扑玩家。

有一点值得注意,这两个程序玩的都是一对一扑克,也就是两名玩家之间的对局,这比多人游戏更容易。2018年,我们很可能看到算法在多玩家扑克上取得一些进步。

Libratus论文:
http://science.sciencemag.org/content/early/2017/12/15/science.aao1733.full

用强化学习玩人类游戏的下一个领域,似乎是更复杂的多人游戏,除了多人扑克之外,还有星际争霸、DotA等等。DeepMind正在积极研究星际争霸2,发布了相关的研究环境

星际争霸2研究环境:
https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/

OpenAI在DotA中单比赛中取得了初步的成功,玩转5v5游戏,是他们的下一步目标


进化算法回归

对于监督学习来说,基于梯度的反向传播算法已经非常好,而且这一点可能短期内不会有什么改变。

然而,在强化学习中,进化策略(Evolution Strategies, ES)似乎正在东山再起。因为强化学习的数据通常不是lid(独立同分布)的,错误信号更加稀疏,而且需要探索,不依赖梯度的算法表现很好。另外,进化算法可以线性扩展到数千台机器,实现非常快的平行训练。它们不需要昂贵的GPU,但可以在成百上千便宜的CPU机器上进行训练。

2017年早些时候,OpenAI的研究人员证明了进化策略实现的性能,可以与Deep Q-Learning等标准强化学习算法相媲美。

相关论文:
https://arxiv.org/abs/1703.03864

年底,Uber内部一个团队又连发5篇论文,来展示遗传算法和新颖性搜索的潜力。他们使用非常简单的遗传算法,没有任何梯度信息,学会了玩各种雅达利游戏。他们的进化算法在Frostbite游戏中达到了10500分,而DQN、AC3、ES等算法在同样的游戏中得分都不到1000。

WaveNets,CNNs以及注意力机制

谷歌的Tacotron 2文本转语音系统效果令人印象深刻。这个系统基于WaveNet,也是一种自动回归模型,也被部署于Google Assistant之中,并在过去一年得到快速提升。

远离昂贵且训练漫长的回归架构是一个更大的趋势。在论文Attention is All you Need里,研究人员完全摆脱了循环和卷积,使用一个更复杂的注意力机制,只用了很小的训练成本,就达到了目前最先进的结果。

论文地址:https://arxiv.org/abs/1706.03762

深度学习框架这一年

如果非要用一句话总结2017,那只能说是框架之年。

Facebook搞出了PyTorch,这个框架得到了搞自然语言处理的研究人员大爱。

TensorFlow在2017年继续领跑,目前已经发布到1.4.1版本。除了主框架之外,还发布了多个伴随库。TensorFlow团队还发布了一个全新的eager execution模式,类似PyTorch的动态计算图。

此外,

除了通用的深度学习框架外,我们还看到大量的强化学习框架发布:

  • OpenAI Roboschool,用于机器人仿真
https://blog.openai.com/roboschool/
  • OpenAI Baselines,一套强化学习算法的高质量实现
https://github.com/openai/baselines
  • Tensorflow Agents,用TensorFlow来训练RL智能体
https://github.com/tensorflow/agents
  • Unity ML Agents,研究人员可用Unity Editor来创建游戏,并展开强化训练
https://github.com/Unity-Technologies/ml-agents
  • Nervana Coach,用最先进的强化学习算法进行试验
http://coach.nervanasys.com/
  • Facebook ELF,游戏研究平台
https://code.facebook.com/posts/132985767285406/introducing-elf-an-extensive-lightweight-and-flexible-platform-for-game-research/
  • DeepMind Pycolab,定制化的游戏引擎
https://github.com/deepmind/pycolab
  • Geek.ai MAgent,多智能体强化学习平台
https://github.com/geek-ai/MAgent

为了让深度学习更易普及,还有一些面向web的框架,例如谷歌的deeplearn.js和MIL WebDNN执行框架。

2017,还有一个流行框架跟我们告别了。

那就是Theano

学习资源

随着深度学习和强化学习越来越流行,2017年有越来越多的课程、训练营等活动举行并分享到网上。以下是我最爱的一些。

  • Deep RL Bootcamp,由OpenAI和UC Berkeley联合主办,主要讲授关于强化学习的基础知识和最新研究成果
地址:https://sites.google.com/view/deep-rl-bootcamp/lectures?authuser=0
  • 斯坦福视觉识别卷积神经网络课程2017春季版
http://cs231n.stanford.edu/
  • 斯坦福自然语言处理与深度学习课程2017冬季版
http://web.stanford.edu/class/cs224n/
  • 斯坦福的深度学习理论课程
https://stats385.github.io/
  • Coursera上最新的深度学习课程
https://www.coursera.org/specializations/deep-learning
  • 蒙特利尔深度学习和强化学习暑期学校
http://videolectures.net/deeplearning2017_montreal/
  • UC Berkeley的深度强化学习课程2017秋季版
http://rll.berkeley.edu/deeprlcourse/
  • TensorFlow开发者大会上关于深度学习和TensorFlow API相关的内容
https://www.youtube.com/playlist?list=PLOU2XLYxmsIKGc_NBoIhTn2Qhraji53cv

几大学术会议,延续了在网上发布会议内容的新传统。如果你想赶上最尖端的研究,可以查看这些顶级会议的录像资料。

  • NIPS 2017:
https://nips.cc/Conferences/2017/Videos
  • ICLR 2017:
https://www.facebook.com/pg/iclr.cc/videos/
  • EMNLP 2017:
https://ku.cloud.panopto.eu/Panopto/Pages/Sessions/List.aspx

研究人员也开始在arXiv上发布低门槛的教程和综述论文。以下是过去一年我的最爱。

  • 深度强化学习:概述
Deep Reinforcement Learning: An Overview
https://arxiv.org/abs/1701.07274
  • 给工程师的机器学习简介
A Brief Introduction to Machine Learning for Engineers
https://arxiv.org/abs/1709.02840
  • 神经机器翻译
Neural Machine Translation
https://arxiv.org/abs/1709.07809
  • 教程:神经机器翻译和序列到序列模型
Neural Machine Translation and Sequence-to-sequence Models: A Tutorial
https://arxiv.org/abs/1703.01619

应用:AI和医学

2017年,有不少人宣称用深度学习解决了医疗问题,而且还击败了人类专家。这其中有真正的突破,也有一些炒作。对这方面感兴趣的话,推荐关注Luke Oakden-Rayner的人类医生终结系列博客:
https://lukeoakdenrayner.wordpress.com/2017/04/20/the-end-of-human-doctors-introduction/

这里简要介绍一些发展。其中最重要的事件包括:斯坦福的一个团队公布了用深度学习识别皮肤癌的算法细节。

相关研究:https://cs.stanford.edu/people/esteva/nature/

另一个斯坦福的团队则开发了一个模型,能比人类专家更好的发现心律失常。

相关研究:https://stanfordmlgroup.github.io/projects/ecg/


当然也有一些风波。例如DeepMind与NHS之间的问题;NIH发布了一个不适合训练AI的胸部X光片数据集等等。

应用:艺术和GAN

应用于图像、音乐、绘图和视频领域的生成模型,今年也越来越受到关注。NIPS 2017还首次推出了面向创意与设计的机器学习研讨会。

最流行的应用之一是谷歌的QuickDraw,使用神经网络来识别你的涂鸦。基于已经发布的数据集,你甚至可以让机器帮你画完草稿

一起去玩一下:
https://quickdraw.withgoogle.com/

GAN今年取得了不少重大进展。例如CycleGAN、DiscoGAN、StarGAN等新模型在生成人脸方面令人印象深刻。GAN通常难以生成逼真的高分辨率图像,但pix2pixHD改变了这种现状。


相关地址:

CycleGAN
https://arxiv.org/abs/1703.10593

DiscoGAN
https://github.com/carpedm20/DiscoGAN-pytorch

StarGAN
https://github.com/yunjey/StarGAN

应用:无人车

无人车领域的大玩家包括Uber、Lyft、Waymo和Tesla。Uber这一年都麻烦不断,但是这家公司一直没有停下在无人车方面的脚步。

Waymo在亚利桑那的凤凰城进行了一系列无人车实验,还公布了测试和模拟技术的细节。Lyft正在建立自己的无人车硬件和软件体系。特斯拉的Autopilot没有太多更新。

当然还有一个“新的”入局者,库克证实苹果公司也在研究自动驾驶

超酷的研究和应用

今年有很多好玩的项目和展示,这里不可能提及所有:

一起来试试吧~ http://make.girls.moe/#/
  • 用神经网络给黑白照片着色
  • 神经网络玩《马里奥赛车》
  • 实时《马里奥赛车 64》AI
https://github.com/rameshvarun/NeuralKart

在研究层面,

https://arxiv.org/abs/1712.01208
  • Attention is All You Need - Google推出的翻译架构Transformer完全舍弃了RNN/CNN结构。
https://arxiv.org/pdf/1706.03762.pdf

数据集

神经网络需要大量的数据,因此开放数据集是对行业的重要贡献。以下是今年几个新推出的数据集代表。

  • Youtube Bounding Boxes
https://research.google.com/youtube-bb
  • Google QuickDraw Data
https://quickdraw.withgoogle.com/data
  • DeepMind Open Source Datasets
https://deepmind.com/research/open-source/open-source-datasets
  • Google Speech Commands Dataset
https://research.googleblog.com/2017/08/launching-speech-commands-dataset.html
  • Atomic Visual Actions
https://research.google.com/ava/
  • Several updates to the Open Images data set
https://github.com/openimages/dataset
  • Nsynth dataset of annotated musical notes
https://magenta.tensorflow.org/datasets/nsynth
  • Quora Question Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

深度学习,重现性和炼金术

过去一年中,研究人员对学术论文结果的可复现性提出了担忧。深度学习模型通常依赖于大量的超参数,必须对其进行优化才能获得足够好的结果。这种优化代价高昂,可能只有Google和Facebook才能负担得起。

另外,研究人员并不总是同步公开代码,论文中有时还会漏掉重要的细节,或者使用特殊的评估方法……这些因素都让可复现性成为一个大问题。

在论文Are GANs Created Equal? A Large-Scale Study中,使用昂贵的超参数搜索调整GAN,可以击败更为复杂的方法。

论文地址:https://arxiv.org/abs/1711.10337

同样,在论文On the State of the Art of Evaluation in Neural Language Models中,研究人员表明,简单的LSTM架构在正确调整后,表现就能比最近的多数模型都好。

论文地址:https://arxiv.org/abs/1707.05589

在NIPS 2017大会上,阿里·拉希米称现在的深度学习就像“炼金术”,呼吁更为严谨的学术管理。不过Yann LeCun随即进行了实名反击。

竞争,炒作和失败

加拿大和中国,正在加速AI方面的部署。

硬件方面,AI芯片竞争提速,英伟达发布了最新的Titan V旗舰GPU、Google发布了第二代TPU、英特尔的Nervana也发布了新的芯片。就连特斯拉也在开发AI硬件。另外,来自中国的竞争者也不容小觑。

宣传非常重要,但有些宣传和实验室实际发生的事情不符。IBM沃森就是过度营销的传奇,并没有带来相符的结果。大家都不喜欢沃森,所以他们在医疗方面一再失败也不奇怪。

Facebook的人工智能发明了自己的语言那事,其实也跟真相不符。这不简单是媒体的误导,研究人员所用的标题和摘要也越了界,没能反映实验的实际结果。

本文作者:若朴 夏乙
原文发布时间:2018-01-01
相关文章
|
2月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
93 3
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
204 9
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘AI:深度学习的奥秘与实践
本文将深入浅出地探讨人工智能中的一个重要分支——深度学习。我们将从基础概念出发,逐步揭示深度学习的原理和工作机制。通过生动的比喻和实际代码示例,本文旨在帮助初学者理解并应用深度学习技术,开启AI之旅。
|
2月前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
116 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘深度学习中的自注意力机制及其在现代AI应用中的革新
揭秘深度学习中的自注意力机制及其在现代AI应用中的革新
|
2月前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
196 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第26天】近年来,深度学习技术在医学影像诊断中的应用日益广泛,通过训练大量医学影像数据,实现对疾病的准确诊断。例如,卷积神经网络(CNN)已成功用于识别肺癌、乳腺癌等疾病。深度学习不仅提高了诊断准确性,还缩短了诊断时间,提升了患者体验。然而,数据隐私、数据共享和算法透明性等问题仍需解决。未来,AI将在医学影像诊断中发挥更大作用,成为医生的得力助手。
229 0
|
3月前
|
机器学习/深度学习 数据采集 人工智能
数据驱动的AI技术:如何通过深度学习提升图像识别精度
【10月更文挑战第18天】 数据驱动的AI技术:如何通过深度学习提升图像识别精度
94 0
|
3月前
|
机器学习/深度学习 人工智能 数据可视化
深度学习之可解释人工智能(Explainable AI,XAI)
可解释人工智能(XAI)是一个旨在使AI决策过程透明和可理解的研究领域。随着AI和机器学习技术在多个行业中的应用变得越来越广泛,其决策过程的透明度和可解释性变得极其重要。
128 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的未来:深度学习与自然语言处理的融合
【9月更文挑战第22天】本文旨在探讨AI技术中深度学习与自然语言处理的结合,以及它们如何共同推动未来技术的发展。我们将通过实例和代码示例,深入理解这两种技术如何相互作用,以及它们如何影响我们的生活和工作。
61 4