How to Implement Neural Networks with TensorFlow

简介: Neural networks and TensorFlow solve many complicated real world problems in a simplified manner. This article explains the same with Python coding, which is very popular because of deep learning.

Machine_learning_based_web_exception_detection

Deep Learning and Neural Networks are currently two of the hottest topics in the field of artificial intelligence (AI). Both deep learning and neural networks are necessary to make sense out of large amounts of data, especially when it comes to Big Data applications.

When to Use Neural Networks?

The "deeper" version of neural networks is making breakthroughs in many fields such as image recognition, speech, and natural language processing.

But what is more important to understand is the application of neural networks. You need to keep the following in mind:

1.Neural networks require a great deal of understanding

Think of a neural network as a kid. . He observes how his parents walk first, and then he walks independently. In each step, he learns how to carry out a specific task. If you don't let him walk, he may never learn how to walk. The more "data" you give him, the better is the effect.

2.Right type of neural network for your problem

Every single problem has its own difficulty. Data determines how you solve the problem. For example, if the problem is about generation of sequences, a recurrent neural network would be more appropriate, but if it is about images, you may need a convolutional neural network instead.

3.Hardware requirements are crucial to run a deep neural network model

Neural networks were "discovered" long ago, but they only got popular in recent years, thanks to the growth of computing power. If you want to solve real-world problems with those networks, be prepared to buy some pieces of high-performance hardware.

How to Solve Problems with Neural Networks

A neural network is a special type of machine learning (ML) algorithm. Just like any other ML algorithm, neural networks follow the conventional ML workflows including data preprocessing, model building, and model evaluation. Here is a step by step guide that I have created to solve problems with neural networks:

•Check whether neural networks can improve your traditional algorithm.

•Conduct a survey to see which neural network architecture is most suitable for the problem to be solved.

•Define the neural network architecture with your selected language/library.

•Convert your data into the correct format and break it into batches.

•Preprocess the data based on your needs.

•Add more data to increase the data volume and make a better training model.

•Send the data batches into the neural network.

•Train and monitor training sets, and validate the changes in the data sets.

•Test your model and save it for future use.

In this article, I will focus on image data. Let's learn about images before we study TensorFlow.

Images are mostly arranged in 3D arrays, and the dimensions refer to the height, width and color channels. For example, if you take a screenshot of your desktop now, the screenshot will be converted to a 3D array first and then compressed into .png or .jpg format.

Although images are very easy for humans to understand, they are hard for computers. This is called the semantic gap. Human brains can view images and understand the complete picture in seconds. However, computers see images as a set of numbers.

In earlier days, people tried to decompose images into "understandable" formats like "templates." For example, different faces always have a specific structure that is common to everyone, such as the positions of eyes and noses or the shapes of faces. However, this approach is not feasible as such "templates" don't hold when the number of objects to be recognized increases.

In 2012, deep neural network architecture won the ImageNet challenge, a major competition for identifying objects from natural scenes.

So which libraries/languages are usually used to solve image recognition problems? A recent survey reveals that the most popular deep learning library is Python's API, followed by those of Lua, Java and Matlab. Other popular libraries include:

•Caffe

•DeepLearning4j

•TensorFlow

•Theano

•Torch

Let's take a look at TensorFlow and some of its features and benefits:

TensorFlow is an open source software library that uses data flow graphs for numeric computation. The nodes in the graphs represent mathematical operations, while the edges represent the multidimensional data arrays (aka tensors) that are passed between them. The flexible architecture allows you to deploy the computation to one or more CPUs or GPUs in your desktops, servers, or mobile devices using a single API.

1

TensorFlow is a piece of cake, if you have ever used NumPy. One of the main differences between the two is that TensorFlow follows a "lazy" programming paradigm. It first builds all the action graphs to be completed, then it "runs" the graphs when a "session" is invoked. Building a computation graph can be considered the major component of TensorFlow.

TensorFlow is more than just a powerful neural network library. It enables you to build other machine learning algorithms on it, such as decision trees or k-nearest-neighbors.

The advantages of TensorFlow include:

•An intuitive structure, because, as its name suggests, it has a "tensor flow" That allows you to easily see every part of the graph.

•Scope to easily perform distributed computation on the CPU/GPU.

•Platform flexibility to run the model anywhere on mobile devices, servers or Pcs.

The Typical "Tensor Flow"

Every library has its own "implementation details", i.e. a method written in its encoding mode. For example, when executing scikit-learn, we first create the object of the desired algorithm, and then build a model on the training set and predict the test set. Example:

2

As I said earlier, TensorFlow follows a "lazy" approach. The normal workflow of running a program in TensorFlow is as follows:

•Create a computation graph on any math operation of your choice that is supported by TensorFlow.

•Initialize variables.

•Create a session.

•Run the graph in the session.

•Close the session.

Next, let's write a small program to add two numbers!

3

Implementing Neural Networks in TensorFlow

Note: We can use different neural network architectures to solve this problem, but for the sake of simplicity, we need to implement feedforward multilayer perceptrons.

The common implementation of neural networks is as below:

•Define the neural network architecture to be compiled.

•Transfer the data to your model.

•Divide the data into batches and then preprocess them.

•Add the batches to the neural network for training.

•Display the accuracy of specific time steps.

•Save the model for future use after training.

•Test the model on new data and check its implementation.

Our challenge here is to identify the numbers in given 28x28 images. We will take some images for training, and the remaining will be used to test our model. So, we first download the data set that contains the compressed files of all the images in the data set: train.csv and test.csv. The data set doesn't provide any additional functions, instead, it just contains the original images in .png format.

Now, we will use TensorFlow to build a neural network model. For this, you should first install TensorFlow on your system.

We will follow the steps as described in the template above. Create a Jupyter notebook with Python 2.7 kernel and follow the steps below.

Import all the required modules:

4

Set the initial value so that we can control the randomness of the model:

5

Set the directory path to save the data:

6

Let's look at the data set. The data files are in .csv format and have corresponding tags in their filenames:

7

8

Let's check out what our data looks like!

9

The image above is represented as a NumPy array as below:

10

For simpler data processing, let's store all the images as NumPy arrays:

11

Since this is a typical ML problem, we need to create a validation set in order to test the functionality of our model.

12

Now, let's define some helper functions for later use:

13

Let's define our neural network architecture. We define a neural network with three layers, namely, input layer, hidden layer, and output layer. The numbers of neurons in the input and the output are fixed because the input is 28x28 images and the output is 10x1 vectors. We have 500 neurons in the hidden layer. This number can vary according to your needs.

目录
相关文章
|
机器学习/深度学习 TensorFlow Go
(zhuan) Building Convolutional Neural Networks with Tensorflow
Ahmet Taspinar  Home About Contact Building Convolutional Neural Networks with Tensorflow Posted on augustus 15, 2017 adminPosted in c...
2030 0
|
3月前
|
机器学习/深度学习 TensorFlow API
TensorFlow与Keras实战:构建深度学习模型
本文探讨了TensorFlow和其高级API Keras在深度学习中的应用。TensorFlow是Google开发的高性能开源框架,支持分布式计算,而Keras以其用户友好和模块化设计简化了神经网络构建。通过一个手写数字识别的实战案例,展示了如何使用Keras加载MNIST数据集、构建CNN模型、训练及评估模型,并进行预测。案例详述了数据预处理、模型构建、训练过程和预测新图像的步骤,为读者提供TensorFlow和Keras的基础实践指导。
251 59
|
3月前
|
机器学习/深度学习 人工智能 算法
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
海洋生物识别系统。以Python作为主要编程语言,通过TensorFlow搭建ResNet50卷积神经网络算法,通过对22种常见的海洋生物('蛤蜊', '珊瑚', '螃蟹', '海豚', '鳗鱼', '水母', '龙虾', '海蛞蝓', '章鱼', '水獭', '企鹅', '河豚', '魔鬼鱼', '海胆', '海马', '海豹', '鲨鱼', '虾', '鱿鱼', '海星', '海龟', '鲸鱼')数据集进行训练,得到一个识别精度较高的模型文件,然后使用Django开发一个Web网页平台操作界面,实现用户上传一张海洋生物图片识别其名称。
158 7
海洋生物识别系统+图像识别+Python+人工智能课设+深度学习+卷积神经网络算法+TensorFlow
|
3月前
|
机器学习/深度学习 人工智能 算法
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
乐器识别系统。使用Python为主要编程语言,基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法,通过对30种乐器('迪吉里杜管', '铃鼓', '木琴', '手风琴', '阿尔卑斯号角', '风笛', '班卓琴', '邦戈鼓', '卡萨巴', '响板', '单簧管', '古钢琴', '手风琴(六角形)', '鼓', '扬琴', '长笛', '刮瓜', '吉他', '口琴', '竖琴', '沙槌', '陶笛', '钢琴', '萨克斯管', '锡塔尔琴', '钢鼓', '长号', '小号', '大号', '小提琴')的图像数据集进行训练,得到一个训练精度较高的模型,并将其
53 0
【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
TensorFlow 是一个由 Google 开发的开源深度学习框架
TensorFlow 是一个由 Google 开发的开源深度学习框架
51 3
|
3月前
|
机器学习/深度学习 自然语言处理 TensorFlow
TensorFlow:深度学习框架的领航者
**TensorFlow**是谷歌开源的机器学习框架,用于深度学习和大规模数据处理。它以数据流图为基础,支持分布式计算,提供高效、灵活且可扩展的环境。自2015年以来,经过多次升级,包括引入Eager Execution,提升了开发效率。TensorFlow广泛应用于图像识别、自然语言处理、推荐系统和语音识别等领域,其丰富的API和工具简化了模型构建,促进了深度学习的发展。【6月更文挑战第5天】
84 9
|
9天前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
20 0
|
18天前
|
持续交付 测试技术 jenkins
JSF 邂逅持续集成,紧跟技术热点潮流,开启高效开发之旅,引发开发者强烈情感共鸣
【8月更文挑战第31天】在快速发展的软件开发领域,JavaServer Faces(JSF)这一强大的Java Web应用框架与持续集成(CI)结合,可显著提升开发效率及软件质量。持续集成通过频繁的代码集成及自动化构建测试,实现快速反馈、高质量代码、加强团队协作及简化部署流程。以Jenkins为例,配合Maven或Gradle,可轻松搭建JSF项目的CI环境,通过JUnit和Selenium编写自动化测试,确保每次构建的稳定性和正确性。
42 0
|
18天前
|
测试技术 数据库
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
32 0
|
18天前
|
UED 开发者
哇塞!Uno Platform 数据绑定超全技巧大揭秘!从基础绑定到高级转换,优化性能让你的开发如虎添翼
【8月更文挑战第31天】在开发过程中,数据绑定是连接数据模型与用户界面的关键环节,可实现数据自动更新。Uno Platform 提供了简洁高效的数据绑定方式,使属性变化时 UI 自动同步更新。通过示例展示了基本绑定方法及使用 `Converter` 转换数据的高级技巧,如将年龄转换为格式化字符串。此外,还可利用 `BindingMode.OneTime` 提升性能。掌握这些技巧能显著提高开发效率并优化用户体验。
37 0