GPU Parallel Computing

简介:

   GPU                                                                                                         

  GPU英文全称Graphic Processing Unit,中文翻译为“图形处理器”。GPU是相对于CPU的一个概念,由于在现代的计算机中(特别是家用系统,游戏的发烧友)图形的处理变得越来越重要,需要一个专门的图形的核心处理器。

  GPU有非常多的厂商都生产,和CPU一样,生产的厂商比较多,但大家熟悉的却只有3个,以至于大家以为GPU只有AMD、NVIDIA、Intel3个生产厂商。

nVidia GPU AMD GPU Intel MIC协处理器 nVidia Tegra 4 AMD ARM服务器

CUDA C/C++

CUDA fortran

OpenCL MIC OpenMP CUDA  

GPU 并行计算                                                                                              

  • 可以同CPU或主机进行协同处理
  • 拥有自己的内存
  • 可以同时开启1000个线程
  • 单精度:4.58TFlops 双精度 1.31TFlops

  GPU编程方面主要有一下方法:


 

   采用GPU进行计算时与CPU主要进行以下交互:

  • CPU与GPU之间的数据交换
  • 在GPU上进行数据交换


 

GPU编程--CUDA                                                                                       

CUDA C/C++: download CUDA drivers & compilers & samples (All In One Package ) free from:

    http://developer.nvidia.com/cuda/cuda-downloads

选择适合的版本~~~~我的下载的是5.0 notebook版本

具体安装方法:可参考这里http://blog.csdn.net/diyoosjtu/article/details/8454253

安装后,打开VS->新建,就会发现一个nVidia,里面有一个CUDA

  主要过程:

  • Hello World
    •   Basic syntax, compile & run
  • GPU memory management
    •   Malloc/free
    •   memcpy
  • Writing parallel kernels
    •    Threads & block
    •      Memory hierachy
复制代码
//hello_world.c:
#include <stdio.h>

void hello_world_kernel(){
    printf(“Hello World\n”);
}
int main(){    hello_world_kernel();}
Compile
& Run: gcc hello_world.c ./a.out
复制代码

CUDA:

复制代码
//hello_world.cu:
#include <stdio.h>
__global__ void hello_world_kernel(){
    printf(“Hello World\n”);
}

int main(){    hello_world_kernel<<<1,1>>>();}

Compile & Run:
nvcc hello_world.cu
./a.out
复制代码

 

GPU计算的主要过程:

  1. Allocate CPU memory for n integers
  2. Allocate GPU memory for n integers
  3. Initialize GPU memory to 0s
  4. Copy from CPU to GPU
  5. call the __global__function, compute   

    Keyword for CUDA kernel

  6. Copy from GPU to CPU
  7. Print the values
  8. free

主要函数:

复制代码
//Host (CPU) manages device (GPU) memory:
cudaMalloc (void ** pointer, size_t nbytes)
cudaMemset (void * pointer, int value, size_t count)
cudaFree (void* pointer)

int nbytes = 1024*sizeof(int);
int * d_a = 0;
cudaMalloc( (void**)&d_a,  nbytes );
cudaMemset( d_a, 0, nbytes);
cudaFree(d_a);

cudaMemcpy( void *dst,   void *src,   size_t nbytes, enum cudaMemcpyKind direction);
//returns after the copy is complete
/*blocks CPU thread until all bytes have been copied
doesn’t start copying until previous CUDA calls complete
enum cudaMemcpyKind
  cudaMemcpyHostToDevice
  cudaMemcpyDeviceToHost
  cudaMemcpyDeviceToDevice*/
复制代码

其中,<<<grid,block>>>

  • 2-level hierarchy: blocks and grid
    •   Block = a group of up to 1024 threads
    •   Grid = all blocks for a given kernel launch
    •   E.g. total 72 threads
      •      blockDim=12, gridDim=6
  • A block can:
    •   Synchronize their execution
    •   Communicate via shared memory
  • Size of grid and blocks are specified during kernel launch

例子:

View Code

Thread index computation : 

  idx = blockIdx.x*blockDim.x + threadIdx.x:


 

应用                                                                                                         

High performance math routines for your applications:

  • cuFFT – Fast Fourier Transforms Library
  • cuBLAS – Complete BLAS Library
  • cuSPARSE – Sparse Matrix Library
  • cuRAND – Random Number Generation (RNG) Library
  • NPP – Performance Primitives for Image & Video Processing
  • Thrust – Templated C++ Parallel Algorithms & Data Structures
  • math.h - C99 floating-point Library
 本文转自cococo点点博客园博客,原文链接:http://www.cnblogs.com/coder2012/archive/2013/05/06/3056464.html,如需转载请自行联系原作者
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
人工智能 异构计算
Alibaba Cloud Announces Cooperation with NVIDIA GPU Cloud (NGC) at The Computing Conference – Shenzhen Summit
The NVIDIA GPU Cloud (NGC) image is now available on Alibaba Cloud! Accelerate AI application development with NGC GPU-accelerated containers.
2094 0
Alibaba Cloud Announces Cooperation with NVIDIA GPU Cloud (NGC) at The Computing Conference – Shenzhen Summit
|
22天前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
3月前
|
机器学习/深度学习 编解码 人工智能
阿里云gpu云服务器租用价格:最新收费标准与活动价格及热门实例解析
随着人工智能、大数据和深度学习等领域的快速发展,GPU服务器的需求日益增长。阿里云的GPU服务器凭借强大的计算能力和灵活的资源配置,成为众多用户的首选。很多用户比较关心gpu云服务器的收费标准与活动价格情况,目前计算型gn6v实例云服务器一周价格为2138.27元/1周起,月付价格为3830.00元/1个月起;计算型gn7i实例云服务器一周价格为1793.30元/1周起,月付价格为3213.99元/1个月起;计算型 gn6i实例云服务器一周价格为942.11元/1周起,月付价格为1694.00元/1个月起。本文为大家整理汇总了gpu云服务器的最新收费标准与活动价格情况,以供参考。
阿里云gpu云服务器租用价格:最新收费标准与活动价格及热门实例解析
|
7天前
|
人工智能 弹性计算 编解码
阿里云GPU云服务器性能、应用场景及收费标准和活动价格参考
GPU云服务器作为阿里云提供的一种高性能计算服务,通过结合GPU与CPU的计算能力,为用户在人工智能、高性能计算等领域提供了强大的支持。其具备覆盖范围广、超强计算能力、网络性能出色等优势,且计费方式灵活多样,能够满足不同用户的需求。目前用户购买阿里云gpu云服务器gn5 规格族(P100-16G)、gn6i 规格族(T4-16G)、gn6v 规格族(V100-16G)有优惠,本文为大家详细介绍阿里云gpu云服务器的相关性能及收费标准与最新活动价格情况,以供参考和选择。
|
12天前
|
机器学习/深度学习 人工智能 弹性计算
什么是阿里云GPU云服务器?GPU服务器优势、使用和租赁费用整理
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等多种场景。作为亚太领先的云服务提供商,阿里云的GPU云服务器具备灵活的资源配置、高安全性和易用性,支持多种计费模式,帮助企业高效应对计算密集型任务。
|
12天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云GPU服务器全解析_GPU价格收费标准_GPU优势和使用说明
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等场景。作为亚太领先的云服务商,阿里云GPU云服务器具备高灵活性、易用性、容灾备份、安全性和成本效益,支持多种实例规格,满足不同业务需求。
|
20天前
|
弹性计算 异构计算
2024年阿里云GPU服务器多少钱1小时?亲测价格查询方法
2024年阿里云GPU服务器每小时收费因实例规格不同而异。可通过阿里云GPU服务器页面选择“按量付费”查看具体价格。例如,NVIDIA A100的gn7e实例为34.742元/小时,NVIDIA A10的gn7i实例为12.710156元/小时。更多详情请访问阿里云官网。
66 2
|
21天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
2月前
|
机器学习/深度学习 存储 人工智能
阿里云GPU云服务器实例规格gn6v、gn7i、gn6i实例性能及区别和选择参考
阿里云的GPU云服务器产品线在深度学习、科学计算、图形渲染等多个领域展现出强大的计算能力和广泛的应用价值。本文将详细介绍阿里云GPU云服务器中的gn6v、gn7i、gn6i三个实例规格族的性能特点、区别及选择参考,帮助用户根据自身需求选择合适的GPU云服务器实例。
阿里云GPU云服务器实例规格gn6v、gn7i、gn6i实例性能及区别和选择参考
|
3月前
|
编解码 分布式计算 Linux
最新阿里云服务器、轻量应用服务器、GPU云服务器活动价格参考
阿里云服务器产品包含云服务器、轻量应用服务器、GPU云服务器等,本文汇总了这些云服务器当下最新的实时活动价格情况,包含经济型e实例云服务器价格、通用算力型u1实例云服务器价格、第七代云服务器价格、轻量应用服务器最新价格、GPU云服务器价格,以供大家参考。
最新阿里云服务器、轻量应用服务器、GPU云服务器活动价格参考
下一篇
无影云桌面