日本京都大学新研究:AI读取脑波,重建人类思维

简介: 日本ATR国际电气通信先端技术研究所和日本京都大学的研究人员称他们创造了一个能够读取人的脑波的AI。他们构建了一个神经网络,可以解读并且准确地再现一个人看到的图像或想象的图像。

日本ATR国际电气通信先端技术研究所和日本京都大学的研究人员称他们创造了一个能够读取人的脑波的AI。他们构建了一个神经网络,不仅可以读取,而且能够重建你的思维。

具体来说,根据ZME Science网站的报道,“研究团队创建了一种算法,可以解读并且准确地再现(reproduce)一个人看到的图像或想象的图像。”

f1cf69bfcb16b11f49862e9620204b8f9ea7df73

深度图像重建的结构图。对输入图像的像素值进行了优化,使图像的DNN特征与fMRI活动中解码的特征相似。一个深度生成器网络(DGN)可以选择与DNN组合以产生自然的图像,其中优化是在DGN的输入空间中执行的。Credit: bioRxiv (2017). DOI: 10.1101/240317

研究论文的标题是“利用人类大脑活动的深度图像重建”(Deep image reconstruction from human brain activity),论文写道,研究者能够根据一个人正在观察的场景来复制一个图像。这些AI创造的图像与人实际看到的并不完全一样,只是模糊地表现了人的思维。不过,AI还是能够利用脑电波来重建这些图像。

尽管距离实际使用可能还需几十年的时间,但是这项技术使我们距离创造能够阅读和理解人类思维的系统更近了一步。

a3d893e6c65dc61b70f04c8ff1d40c2f198f57bd

深度图像重建:自然图像

试图驯服一台计算机来解码心理意象(mental image)并不是新的想法。事实上,这一研究已经持续了许多年,研究人员从2011年起就开始试图重建大脑的画面,例如电影片段、照片,甚至梦境。但是,以前所有的系统在范围和能力上都很有限。有些只能处理人脸形状之类狭窄的区域,有些只能通过预先设计好的图像或类别(例如,“鸟”、“蛋糕”、“人”等)来重建图像。到目前为止,所有这些技术都要求有预存的数据;它们起作用的方式是将受试者的大脑活动与之前记录的人正在观察图像时的大脑活动相匹配。

但研究人员称,他们的新算法可以从零开始生成新的、可识别的图像,甚至可以生成仅仅是人的大脑想象出来的形状。

这一切都始于功能性核磁共振成像(fMRI)技术,这是一种测量大脑血液流动的技术,并用其结果判断神经活动。研究团队将3名受试者的视觉处理区域以2毫米分辨率扫描。扫描执行了数次。在每一次扫描中,这3名受试者被要求观看1000张以上的图片,图片包括一条鱼、一架飞机和一些简单的彩色图形。

c260b687ca7c6b840a0d03ab04fb99186475bb2d

一种新的算法,利用大脑活动来重建(底下两行)所观察的图片(第一行)。 图片来源:Kamitani Lab

该研究团队的目标是理解对图像反应的大脑活动,并最终通过计算机程序生成能够在大脑中产生类似反应的图像。

团队最近开始取得成果。研究人员使用一个深度神经网络(DNN)和几层简单的处理元素,而不是一张接一张地向受试者展示图像,直到计算机得到正确的结果。

神谷之康(Yukiyasu Kamitani)是这项研究的主要作者,他说:“我们相信深度神经网络可以很好地表示大脑的层级式处理。”

“使用DNN,我们可以从大脑视觉系统的不同层级(从简单的光对比度到更有意义的内容,例如面部)中提取信息。”

使用decoder,研究人员创建了大脑对DNN中图像的反应。然后,他们不再需要 fMRI 成像测量,也不再使用DNN翻译作为模板。

接下来是一个重复的过程,在这个过程中,系统创建图像,试图让DNN对所需的模板做出相似的反应——无论是动物还是彩色的玻璃窗。 这是一个试验和错误的过程,其中程序以中立的图像开始,并经过200次的重复缓慢地进行改进。为了了解它与想要的图像的接近程度,系统比较了模板和DNN对生成图像的响应之间的差异。这样的计算允许它逐个像素地朝着理想的图像改进。

为了提高最终图像的准确性,团队利用了一个“深度生成器网络”(deep generator network,DGN),这是一种经过预训练的算法,可以从原始输入中创建逼真的图像。从本质上来说,DGN是将完成后的细节放在图像上,使其看起来更自然。

在DGN完成对照片的修补后,一个中立的人类观察者被要求对这项工作进行评价。他会被展示了两张图片供选择,并被提问哪张图片是算法重建的。作者在论文中写道,人类观察者能够在99%的时候能够正确选择系统生成的图像。

接下来是将所有的工作与“读心术”的过程结合起来。他们要求三名受试者回忆之前展示给他们的图像,并扫描他们的大脑。在个过程有点棘手,但结果仍然令人兴奋——这个方法对照片效果不好,但是对于形状,生成器在83%的时候能够创建可识别的图像。

需要注意的是,这一工作看起来非常整洁和谨慎。他们的系统运行得很好,可能瓶颈不在于软件,而在于我们测量大脑活动的能力。或许我们需要等待更好的fMRI成像技术和其他大脑成像技术的出现。


原文发布时间为:2018-01-18

本文作者:马文

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”微信公众号

原文链接:日本京都大学新研究:AI读取脑波,重建人类思维

相关文章
|
2月前
|
机器学习/深度学习 人工智能
打开AI黑匣子,三段式AI用于化学研究,优化分子同时产生新化学知识,登Nature
【10月更文挑战第11天】《自然》杂志发表了一项突破性的化学研究,介绍了一种名为“Closed-loop transfer”的AI技术。该技术通过数据生成、模型训练和实验验证三个阶段,不仅优化了分子结构,提高了光稳定性等性质,还发现了新的化学现象,为化学研究提供了新思路。此技术的应用加速了新材料的开发,展示了AI在解决复杂科学问题上的巨大潜力。
38 1
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
39 25
|
21天前
|
人工智能 开发者
人类自身都对不齐,怎么对齐AI?新研究全面审视偏好在AI对齐中的作用
论文《AI对齐中的超越偏好》挑战了偏好主义AI对齐方法,指出偏好无法全面代表人类价值观,存在冲突和变化,并受社会影响。文章提出基于角色的对齐方案,强调AI应与其社会角色相关的规范标准一致,而非仅关注个人偏好,旨在实现更稳定、适用性更广且更符合社会利益的AI对齐。论文链接:https://arxiv.org/pdf/2408.16984
30 2
|
1月前
|
人工智能 知识图谱
成熟的AI要学会自己搞研究!MIT推出科研特工
MIT推出科研特工SciAgents,结合生成式AI、本体表示和多代理建模,实现科学发现的自动化。通过大规模知识图谱和多代理系统,SciAgents能探索新领域、识别复杂模式,加速新材料发现,展现跨学科创新潜力。
42 12
|
1月前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
2月前
|
人工智能 自然语言处理
召唤100多位学者打分,斯坦福新研究:AI科学家创新确实强
【10月更文挑战第6天】斯坦福大学最新研究评估了大型语言模型(LLMs)在生成新颖研究想法方面的能力,通过100多位NLP专家盲评LLMs与人类研究人员提出的想法。结果显示,LLMs在新颖性方面超越人类(p < 0.05),但在可行性上略逊一筹。研究揭示了LLMs作为科研工具的潜力与挑战,并提出了进一步验证其实际效果的设计。论文详见:https://arxiv.org/abs/2409.04109。
46 6
|
2月前
|
人工智能 自然语言处理 机器人
MIT新研究揭秘AI洗脑术!AI聊天诱导人类编造记忆,真假难辨
麻省理工学院的一项新研究《基于大型语言模型的对话式AI在证人访谈中加剧虚假记忆》显示,使用生成式聊天机器人进行犯罪证人访谈会显著增加参与者的虚假记忆,且影响持久。研究设置了对照组、问卷访谈、预设脚本及生成式聊天机器人四种条件,结果显示生成式聊天机器人诱导的虚假记忆数量远超其他方法。尽管AI技术在效率和准确性方面潜力巨大,但在敏感领域需谨慎应用,并需进一步评估风险,制定伦理准则和监管措施。论文详细内容见[这里](https://arxiv.org/abs/2408.04681)。
54 2
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
|
1天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状与面临的挑战,旨在为读者提供一个全面的视角,了解AI如何改变传统医疗模式,以及这一变革过程中所伴随的技术、伦理和法律问题。通过分析AI技术的优势和局限性,本文旨在促进对AI在医疗领域应用的更深层次理解和讨论。