文本主题模型之潜在语义索引(LSI)

简介:

 在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法。本文关注于潜在语义索引算法(LSI)的原理。

1. 文本主题模型的问题特点

    在数据分析中,我们经常会进行非监督学习的聚类算法,它可以对我们的特征数据进行非监督的聚类。而主题模型也是非监督的算法,目的是得到文本按照主题的概率分布。从这个方面来说,主题模型和普通的聚类算法非常的类似。但是两者其实还是有区别的。

    聚类算法关注于从样本特征的相似度方面将数据聚类。比如通过数据样本之间的欧式距离,曼哈顿距离的大小聚类等。而主题模型,顾名思义,就是对文字中隐含主题的一种建模方法。比如从“人民的名义”和“达康书记”这两个词我们很容易发现对应的文本有很大的主题相关度,但是如果通过词特征来聚类的话则很难找出,因为聚类方法不能考虑到到隐含的主题这一块。

    那么如何找到隐含的主题呢?这个一个大问题。常用的方法一般都是基于统计学的生成方法。即假设以一定的概率选择了一个主题,然后以一定的概率选择当前主题的词。最后这些词组成了我们当前的文本。所有词的统计概率分布可以从语料库获得,具体如何以“一定的概率选择”,这就是各种具体的主题模型算法的任务了。

    当然还有一些不是基于统计的方法,比如我们下面讲到的LSI。

2. 潜在语义索引(LSI)概述

    潜在语义索引(Latent Semantic Indexing,以下简称LSI),有的文章也叫Latent Semantic  Analysis(LSA)。其实是一个东西,后面我们统称LSI,它是一种简单实用的主题模型。LSI是基于奇异值分解(SVD)的方法来得到文本的主题的。而SVD及其应用我们在前面的文章也多次讲到,比如:奇异值分解(SVD)原理与在降维中的应用矩阵分解在协同过滤推荐算法中的应用。如果大家对SVD还不熟悉,建议复习奇异值分解(SVD)原理与在降维中的应用后再读下面的内容。

    这里我们简要回顾下SVD:对于一个m×nm×n的矩阵AA,可以分解为下面三个矩阵:

Am×n=Um×mΣm×nVTn×nAm×n=Um×mΣm×nVn×nT

    有时为了降低矩阵的维度到k,SVD的分解可以近似的写为:

Am×nUm×kΣk×kVTk×nAm×n≈Um×kΣk×kVk×nT

    如果把上式用到我们的主题模型,则SVD可以这样解释:我们输入的有m个文本,每个文本有n个词。而AijAij则对应第i个文本的第j个词的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,UilUil对应第i个文本和第l个主题的相关度。VjmVjm对应第j个词和第m个词义的相关度。ΣlmΣlm对应第l个主题和第m个词义的相关度。

    也可以反过来解释:我们输入的有m个词,对应n个文本。而AijAij则对应第i个词档的第j个文本的特征值,这里最常用的是基于预处理后的标准化TF-IDF值。k是我们假设的主题数,一般要比文本数少。SVD分解后,UilUil对应第i个词和第l个词义的相关度。VjmVjm对应第j个文本和第m个主题的相关度。ΣlmΣlm对应第l个词义和第m个主题的相关度。

    这样我们通过一次SVD,就可以得到文档和主题的相关度,词和词义的相关度以及词义和主题的相关度。

3. LSI简单实例

    这里举一个简单的LSI实例,假设我们有下面这个有10个词三个文本的词频TF对应矩阵如下:

    

    这里我们没有使用预处理,也没有使用TF-IDF,在实际应用中最好使用预处理后的TF-IDF值矩阵作为输入。

    我们假定对应的主题数为2,则通过SVD降维后得到的三矩阵为:

    从矩阵UkUk我们可以看到词和词义之间的相关性。而从VkVk可以看到3个文本和两个主题的相关性。大家可以看到里面有负数,所以这样得到的相关度比较难解释。

4. LSI用于文本相似度计算

    在上面我们通过LSI得到的文本主题矩阵可以用于文本相似度计算。而计算方法一般是通过余弦相似度。比如对于上面的三文档两主题的例子。我们可以计算第一个文本和第二个文本的余弦相似度如下 :

sim(d1,d2)=(0.4945)(0.6458)+(0.6492)(0.7194)(0.4945)2+0.64922(0.6458)2+(0.7194)2sim(d1,d2)=(−0.4945)∗(−0.6458)+(0.6492)∗(−0.7194)(−0.4945)2+0.64922(−0.6458)2+(−0.7194)2

5. LSI主题模型总结

    LSI是最早出现的主题模型了,它的算法原理很简单,一次奇异值分解就可以得到主题模型,同时解决词义的问题,非常漂亮。但是LSI有很多不足,导致它在当前实际的主题模型中已基本不再使用。

    主要的问题有:

    1) SVD计算非常的耗时,尤其是我们的文本处理,词和文本数都是非常大的,对于这样的高维度矩阵做奇异值分解是非常难的。

    2) 主题值的选取对结果的影响非常大,很难选择合适的k值。

    3) LSI得到的不是一个概率模型,缺乏统计基础,结果难以直观的解释。

    对于问题1),主题模型非负矩阵分解(NMF)可以解决矩阵分解的速度问题。对于问题2),这是老大难了,大部分主题模型的主题的个数选取一般都是凭经验的,较新的层次狄利克雷过程(HDP)可以自动选择主题个数。对于问题3),牛人们整出了pLSI(也叫pLSA)和隐含狄利克雷分布(LDA)这类基于概率分布的主题模型来替代基于矩阵分解的主题模型。

    回到LSI本身,对于一些规模较小的问题,如果想快速粗粒度的找出一些主题分布的关系,则LSI是比较好的一个选择,其他时候,如果你需要使用主题模型,推荐使用LDA和HDP。


本文转自刘建平Pinard博客园博客,原文链接:http://www.cnblogs.com/pinard/p/6805861.html,如需转载请自行联系原作者

相关文章
|
5月前
【论文速递】ICLR2018 - 用于小样本语义分割的条件网络
【论文速递】ICLR2018 - 用于小样本语义分割的条件网络
71 0
|
5月前
|
机器学习/深度学习 算法 机器人
【论文速递】TMM2023 - FECANet:用特征增强的上下文感知网络增强小样本语义分割
【论文速递】TMM2023 - FECANet:用特征增强的上下文感知网络增强小样本语义分割
|
5月前
|
计算机视觉
论文介绍:像素级分类并非语义分割的唯一选择
【5月更文挑战第24天】论文《像素级分类并非语义分割的唯一选择》提出了MaskFormer模型,该模型通过掩模分类简化语义与实例级分割任务,无需修改模型结构、损失函数或训练过程。在ADE20K和COCO数据集上取得优异性能,显示处理大量类别时的优势。MaskFormer结合像素级、Transformer和分割模块,提高效率和泛化能力。掩模分类方法对比边界框匹配更具效率,且MaskFormer的掩模头设计降低计算成本。该方法为语义分割提供新思路,但实际应用与小物体处理仍有待检验。[链接](https://arxiv.org/abs/2107.06278)
46 3
|
12月前
|
移动开发 数据可视化 算法
Pointnet语义分割任务S3DIS数据集
Pointnet语义分割任务S3DIS数据集
405 0
|
5月前
|
机器学习/深度学习 PyTorch 数据处理
零基础入门语义分割-地表建筑物识别 Task2 数据扩增-学习笔记
零基础入门语义分割-地表建筑物识别 Task2 数据扩增-学习笔记
81 1
|
5月前
|
机器学习/深度学习 编解码 自动驾驶
【论文速递】WACV2022 - 基于小样本分割的多尺度Non-Novel片段消除方法
【论文速递】WACV2022 - 基于小样本分割的多尺度Non-Novel片段消除方法
|
算法 搜索推荐 Ubuntu
语义检索系统:基于无监督预训练语义索引召回:SimCSE、Diffcse
语义检索系统:基于无监督预训练语义索引召回:SimCSE、Diffcse
语义检索系统:基于无监督预训练语义索引召回:SimCSE、Diffcse
|
机器学习/深度学习 存储 自然语言处理
文档级关系抽取:基于结构先验产生注意力偏差SSAN模型
文档级关系抽取:基于结构先验产生注意力偏差SSAN模型
文档级关系抽取:基于结构先验产生注意力偏差SSAN模型
|
编解码 数据可视化 测试技术
基于一致性的半监督语义分割方法:刷新多项SOTA,还有更好泛化性
基于一致性的半监督语义分割方法:刷新多项SOTA,还有更好泛化性
271 0
|
传感器 机器学习/深度学习 数据采集
CMNEXT: 基于编解码架构的强大语义分割基线,解锁多模态语义分割的正确姿势!
CMNEXT: 基于编解码架构的强大语义分割基线,解锁多模态语义分割的正确姿势!
152 0