Storm概念学习系列之storm的功能和三大应用

简介:

storm的功能

   Storm 有许多应用领域:实时分析、在线机器学习、持续计算、分布式 RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading 的缩写,即数据抽取、转换和加载)等。

 

 

 

 

下面介绍 Storm 的三大主要应用
(1)流处理( stream processing)
Storm 可用来实时处理新数据和更新数据库,兼具容错性和可扩展性,即 Storm 可以用来处理源源不断流进来的消息,处理之后将结果写入某个存储中。


 (2)持续计算( continuous computation)
Storm 可进行连续查询并把结果即时反馈给客户端,如把 Twitter 上的热门话题发送到浏览器中。

  Storm能保证计算可以永久运行,直到用户结束计算进程为止。

 

  (3)分布式远程程序调用( distributed RPC)

  Storm 可用来并行处理密集查询。 Storm 的拓扑结构是一个等待调用信息的分布函数,当它收到一条调用信息后,会对查询进行计算,并返回查询结果。例如,分布式 RPC 可以做并行搜索或者处理大集合的数据,通过配置DRPC服务器,将 Storm的Topology发布为DRPC服务。客户端程序可以调用DRPC服务将数据发送到 Storm 集群中,并接收处理结果的反馈。这种方式需要DRPC服务器转发,其中 DRPC 服务器底层通过 Thrift 实现。适合的业务场景主要是实时计算,且扩展性良好,可以增加每个节点的 Worker 数量来动态扩展。

  Storm 绝对是一个相当“有内涵”的系统,能把那么复杂的事情抽象得很完美,能把数学用到极致,这是笔者使用 Storm 实现消息确保被执行一次之后最直接的感觉。例如互联网方向的实时推荐,海量的用户、数据,且需要实时的推荐算法计算,该如何实现?有了 Storm, Spout 从数据源取得数据, Bolt 可以合并,也可以切分数据,最终完成整个业务逻辑处理并输出结果。分分合合,就像河水从曲曲折折的河道一直流向大海一样,所以也称这种数据处理方式为流式计算



本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/5989268.html,如需转载请自行联系原作者

相关文章
|
流计算
106 Storm编程模型
106 Storm编程模型
51 0
|
消息中间件 存储 大数据
实时流处理框架之Storm的安装与部署
实时流处理框架之Storm的安装与部署
258 0
实时流处理框架之Storm的安装与部署
|
分布式计算 搜索推荐 NoSQL
|
jstorm 分布式计算 Java
storm笔记:storm基本概念
本文主要介绍storm中的基本概念,从基础上了解strom的体系结构,便于后续编程过程中作为基础指导。主要的概念包括
355 0
storm笔记:storm基本概念
|
存储 分布式计算 Java
|
关系型数据库 数据库 流计算