Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
此题是之前那道的 Largest Rectangle in Histogram 直方图中最大的矩形 的扩展,这道题的二维矩阵每一层向上都可以看做一个直方图,输入矩阵有多少行,就可以形成多少个直方图,对每个直方图都调用 Largest Rectangle in Histogram 直方图中最大的矩形 中的方法,就可以得到最大的矩形面积。那么这道题唯一要做的就是将每一层构成直方图,由于题目限定了输入矩阵的字符只有 '0' 和 '1' 两种,所以处理起来也相对简单。方法是,对于每一个点,如果是‘0’,则赋0,如果是 ‘1’,就赋 之前的height值加上1。具体参见代码如下:
解法一:
class Solution { public: int maximalRectangle(vector<vector<char> > &matrix) { int res = 0; vector<int> height; for (int i = 0; i < matrix.size(); ++i) { height.resize(matrix[i].size()); for (int j = 0; j < matrix[i].size(); ++j) { height[j] = matrix[i][j] == '0' ? 0 : (1 + height[j]); } res = max(res, largestRectangleArea(height)); } return res; } int largestRectangleArea(vector<int> &height) { int res = 0; stack<int> s; height.push_back(0); for (int i = 0; i < height.size(); ++i) { if (s.empty() || height[s.top()] <= height[i]) s.push(i); else { int tmp = s.top(); s.pop(); res = max(res, height[tmp] * (s.empty() ? i : (i - s.top() - 1))); --i; } } return res; } };
我们也可以在一个函数内完成,这样代码看起来更加简洁一些:
解法二:
class Solution { public: int maximalRectangle(vector<vector<char>>& matrix) { if (matrix.empty() || matrix[0].empty()) return 0; int res = 0, m = matrix.size(), n = matrix[0].size(); vector<int> height(n + 1, 0); for (int i = 0; i < m; ++i) { stack<int> s; for (int j = 0; j < n + 1; ++j) { if (j < n) { height[j] = matrix[i][j] == '1' ? height[j] + 1 : 0; } while (!s.empty() && height[s.top()] >= height[j]) { int cur = s.top(); s.pop(); res = max(res, height[cur] * (s.empty() ? j : (j - s.top() - 1))); } s.push(j); } } return res; } };
下面这种方法的思路很巧妙,height数组和上面一样,这里的left数组表示左边界是1的位置,right数组表示右边界是1的位置,那么对于任意一行的第j个位置,矩形为(right[j] - left[j]) * height[j],我们举个例子来说明,比如给定矩阵为:
[
[1, 1, 0, 0, 1],
[0, 1, 0, 0, 1],
[0, 0, 1, 1, 1],
[0, 0, 1, 1, 1],
[0, 0, 0, 0, 1]
]
第0行:
h: 1 1 0 0 1 l: 0 0 0 0 4 r: 2 2 5 5 5
第1行:
h: 1 1 0 0 1 l: 0 0 0 0 4 r: 2 2 5 5 5
第2行:
h: 0 0 1 1 3 l: 0 0 2 2 4 r: 5 5 5 5 5
第3行:
h: 0 0 2 2 4 l: 0 0 2 2 4 r: 5 5 5 5 5
第4行:
h: 0 0 0 0 5 l: 0 0 0 0 4 r: 5 5 5 5 5
解法三:
class Solution { public: int maximalRectangle(vector<vector<char>>& matrix) { if (matrix.empty() || matrix[0].empty()) return 0; int res = 0, m = matrix.size(), n = matrix[0].size(); vector<int> height(n, 0), left(n, 0), right(n, n); for (int i = 0; i < m; ++i) { int cur_left = 0, cur_right = n; for (int j = 0; j < n; ++j) { if (matrix[i][j] == '1') ++height[j]; else height[j] = 0; } for (int j = 0; j < n; ++j) { if (matrix[i][j] == '1') left[j] = max(left[j], cur_left); else {left[j] = 0; cur_left = j + 1;} } for (int j = n - 1; j >= 0; --j) { if (matrix[i][j] == '1') right[j] = min(right[j], cur_right); else {right[j] = n; cur_right = j;} } for (int j = 0; j < n; ++j) { res = max(res, (right[j] - left[j]) * height[j]); } } return res; } };
我们也可以通过合并一些for循环,使得运算速度更快一些:
解法四:
class Solution { public: int maximalRectangle(vector<vector<char>>& matrix) { if (matrix.empty() || matrix[0].empty()) return 0; int res = 0, m = matrix.size(), n = matrix[0].size(); vector<int> height(n, 0), left(n, 0), right(n, n); for (int i = 0; i < m; ++i) { int cur_left = 0, cur_right = n; for (int j = 0; j < n; ++j) { if (matrix[i][j] == '1') { ++height[j]; left[j] = max(left[j], cur_left); } else { height[j] = 0; left[j] = 0; cur_left = j + 1; } } for (int j = n - 1; j >= 0; --j) { if (matrix[i][j] == '1') { right[j] = min(right[j], cur_right); } else { right[j] = n; cur_right = j; } res = max(res, (right[j] - left[j]) * height[j]); } } return res; } };
本文转自博客园Grandyang的博客,原文链接:最大矩形[LeetCode] Maximal Rectangle ,如需转载请自行联系原博主。