概率论快速学习03:概率公理补充

简介:

Written In The Font

  I  like maths when i was young,but I need to record them. So I am writing with some demos of Python

 

Content

  If two events, A and B are independent then the joint probability is

   P(A \mbox{ and }B) =  P(A \cap B) = P(A) P(B),\,

          Durchschnitt.png                                         

 

For example, if two coins are flipped the chance of both being heads is

\tfrac{1}{2}\times\tfrac{1}{2} = \tfrac{1}{4}.

 

In Python

A = set([1,2,3,4,5])
B = set([2,4,3,5,6])
C = set([4,6,7,4,2,1])

print(A & B & C)

Output:

{2, 4}

# & find the objects  the same in Set


         

   If either event A or event B or both events occur on a single performance of an experiment this is called the union of the events A and B denoted as:

   P(A \cup B).

  If two events are mutually exclusive then the probability of either occurring is

  P(A\mbox{ or }B) =  P(A \cup B)= P(A) + P(B).

            Vereinigung.png

 

For example, the chance of rolling a 1 or 2 on a six-sided die is

 P(1\mbox{ or }2) = P(1) + P(2) = \tfrac{1}{6} + \tfrac{1}{6} = \tfrac{1}{3}.

 

In Python

A = set([1,2,3,4,5])
B = set([2,4,3,5,6])
C = set([4,6,7,4,2,1])

print(A | B | C)
Output:
{1, 2, 3, 4, 5, 6, 7}

# | find all the objects the set has


  If the events are not mutually exclusive then

  P\left(A \hbox{ or } B\right)=P\left(A\right)+P\left(B\right)-P\left(A \mbox{ and } B\right).

Proved

  
\begin{align}
P(A\cup B) & =P(A\setminus B)+P(A\cap B)+P(B\setminus A)\\
& =P(A)-P(A\cap B)+P(A\cap B)+P(B)-P(A\cap B)\\
& =P(A)+P(B)-P(A\cap B)
\end{align}

 

For example:

  Let’s use Python to show u an example about devil's bones (骰子,不是 魔鬼的骨头哈87B7B1~1_thumb)

A = set([1,2,3,4,5,6])  # the all results of devil's bones
B = set([2,4,3])        # the A event results 
C = set([4,6])          # the B event results 

P_B =  1/2
P_C =  1/3

D = B | C
print(D)

P_D = 2/3

print(P_D == (P_B+P_C - 1/6))
Output:
{2, 3, 4, 6}
True

Let me show u some others :


         P(A)\in[0,1]\,
         P(A^c)=1-P(A)\,
         \begin{align}
P(A\cup B) & = P(A)+P(B)-P(A\cap B) \\
P(A\cup B) & = P(A)+P(B) \qquad\mbox{if A and B are mutually exclusive} \\
\end{align}
         \begin{align}
P(A\cap B) & = P(A|B)P(B) = P(B|A)P(A)\\
P(A\cap B) &  = P(A)P(B) \qquad\mbox{if A and B are independent}\\
\end{align} 
        P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)} \, 

 

If u r tired , please have a tea , or look far to make u feel better.If u r ok, Go on!


  Conditional probability is the probability of some event A, given the occurrence of some other event B. Conditional probability is written:

   P(A \mid B),

   Some authors, such as De Finetti, prefer to introduce conditional probability as an axiom of probability:

P(A \cap B) = P(A|B)P(B)

Given two events A and B from the sigma-field of a probability space with P(B) > 0, the conditional probability of A given Bis defined as the quotient of the probability of the joint of events A and B, and the probability of B:  

  P(A|B) = \frac{P(A \cap B)}{P(B)}

  the ①② expressions  are the same. Maybe u can remember one , the other will be easy to be coverted.So I am going to tell an excemple to let u remmeber it(them):

  

  “the phone has a power supply (B), the phone can be used to call others(A).”

  One →  P(A \mid B) : When the phone has a full power supply , u can call others.

  Two →P(B): has   a power supply           

  Three = One +  Two → U can call others about your love with others.

 

do u remember it?

                                                                 u=2234442768,3895906646&fm=21&gp=0_thumb[1]

 

Editor's Note

    “路漫漫其修远兮,吾将上下而求索”

 

The Next

            cya soon. We meet a big mess called The total probability and Bayes .

 

      The total probability

      P( A )=P( A | H_1) \cdot P( H_1)+\ldots +P( A | H_n) \cdot P( H_n)
P(A)=\sum_{j=1}^n P(A|H_j)\cdot P(H_j)

      Bayes (Thomas, 1702-1761,) ; 

       P(A \vert B) = \frac {P(B \vert A) \cdot P(A)} {P(B)}

if u wanna talk with me , add the follow:

 

QQ截图20140525001523_thumb[3]

相关文章
|
7月前
线性代数——(期末突击)概率统计习题(概率的性质、全概率公式)
线性代数——(期末突击)概率统计习题(概率的性质、全概率公式)
59 1
|
7月前
数学基础从高一开始7、等式性质与不等式性质(重点作差法)
数学基础从高一开始7、等式性质与不等式性质(重点作差法)
45 0
【概率论基础】Probability | 数学性概率 | 统计性概率 | 几何概率 | 概率论三大公理
【概率论基础】Probability | 数学性概率 | 统计性概率 | 几何概率 | 概率论三大公理
131 0
|
算法 数据挖掘 API
贝叶斯统计在Python数据分析中的高级技术点:贝叶斯推断、概率编程和马尔科夫链蒙特卡洛
贝叶斯统计在Python数据分析中的高级技术点:贝叶斯推断、概率编程和马尔科夫链蒙特卡洛
125 1
贝叶斯统计在Python数据分析中的高级技术点:贝叶斯推断、概率编程和马尔科夫链蒙特卡洛
|
人工智能 开发者
假设检验基本思想 | 学习笔记
快速学习假设检验基本思想
假设检验基本思想 | 学习笔记
|
机器学习/深度学习
高斯过程回归|机器学习推导系列(二十四)
高斯过程回归|机器学习推导系列(二十四)
545 0
高斯过程回归|机器学习推导系列(二十四)
|
程序员
程序员数学(25)–概率初步
本文目录 1. 概念 2. 列举法求概率 3. 用频率估计概率
125 0
程序员数学(25)–概率初步
|
机器学习/深度学习 安全
一文搞懂常见概率分布的直觉与联系
数据科学,不管它到底是什么,其影响力已不可忽视。“数据科学家比任何软件工程师都更擅长统计学。”你可能在本地的技术聚会或者黑客松上无意中听到一个专家这么说。应用数学家大仇得报,毕竟从咆哮的二十年代起人们就不怎么谈论统计学了。
2118 0