【数学家】贝叶斯最终章——贝叶斯分析

简介: 【数学家】贝叶斯最终章——贝叶斯分析

叶斯分析的思路对于由证据的积累来推测一个事物发生的概率具有重大作用, 它告诉我们当我们要预测一个事物, 我们需要的是首先根据已有的经验和知识推断一个先验概率, 然后在新证据不断积累的情况下调整这个概率。整个通过积累证据来得到一个事件发生概率的过程我们称为贝叶斯分析 

 

640.png

理解贝叶斯分析最好的方法即图像法, 这里的 A 的面积即先验,后验是阴影占蓝圈的百分比。

贝叶斯分析可以瞬间理解一些常用的理论, 如幸存者偏差,你发现一些没读过书的人很有钱,事实上是你发现就已经是幸存者了(对应上图中小红圈),而死了的人(红圈外的大部分面积)你都没见到啊。还有阴谋论, 阴谋论的特点是条件很多很复杂, 但是条件一旦成立,结论几乎成立,  你一旦考虑了先验,这些条件成立本身即很困难,阴谋论不攻自克。

 

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg


640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

640.jpg

相关文章
|
6月前
【数理统计实验(三)】假设检验的R实现(三)
【数理统计实验(三)】假设检验的R实现(三)
|
6月前
|
算法
【数理统计实验(二)】参数估计
【数理统计实验(二)】参数估计
|
6月前
【数理统计实验(四)】方差分析
【数理统计实验(四)】方差分析
|
6月前
【数理统计实验(三)】假设检验的R实现(二)
【数理统计实验(三)】假设检验的R实现
|
6月前
|
机器学习/深度学习 人工智能 算法
上升到人生法则的贝叶斯理论
贝叶斯定理在数据分析、机器学习和人工智能等领域有广泛的应用。贝叶斯定理(Bayes' theorem)是一种用于计算条件概率的重要定理,它基于条件概率的定义,描述了在已知某一条件下,另一个条件发生的概率。
|
6月前
|
C++
【数理统计实验(三)】假设检验的R实现(一)
【数理统计实验(三)】假设检验的R实现
|
11月前
|
算法 数据挖掘 API
贝叶斯统计在Python数据分析中的高级技术点:贝叶斯推断、概率编程和马尔科夫链蒙特卡洛
贝叶斯统计在Python数据分析中的高级技术点:贝叶斯推断、概率编程和马尔科夫链蒙特卡洛
111 1
贝叶斯统计在Python数据分析中的高级技术点:贝叶斯推断、概率编程和马尔科夫链蒙特卡洛
15 贝叶斯方法
15 贝叶斯方法
48 0
|
机器学习/深度学习 资源调度 并行计算
经典机器学习系列(一)【 贝叶斯分类、 最大似然估计、 最大后验概率估计】
经典机器学习系列(一)【 贝叶斯分类、 最大似然估计、 最大后验概率估计】
221 0
概率论|贝叶斯公式及其推论的理解和运用
概率论|贝叶斯公式及其推论的理解和运用
172 0
下一篇
无影云桌面