根据twitter的snowflake算法生成唯一ID

简介:

C#版本

复制代码
复制代码
/// <summary>
    /// 根据twitter的snowflake算法生成唯一ID
    /// snowflake算法 64 位
    /// 0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
    /// 第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
    /// 其中datacenter标识位起始是机器位,机器ID其实是线程标识,可以同一一个10位来表示不同机器
    /// </summary>
    public class IdWorker
    {
        //机器ID
        private static long workerId = 1;
        private static long twepoch = 687888001020L; //唯一时间,这是一个避免重复的随机量,自行设定不要大于当前时间戳
        private static long sequence = 0L;
        private static int workerIdBits = 4; //机器码字节数。4个字节用来保存机器码
        public static long maxWorkerId = -1L ^ -1L << workerIdBits; //最大机器ID
        private static int sequenceBits = 10; //计数器字节数,10个字节用来保存计数码
        private static int workerIdShift = sequenceBits; //机器码数据左移位数,就是后面计数器占用的位数
        private static int timestampLeftShift = sequenceBits + workerIdBits; //时间戳左移动位数就是机器码和计数器总字节数
        public static long sequenceMask = -1L ^ -1L << sequenceBits; //一微秒内可以产生计数,如果达到该值则等到下一微妙在进行生成
        private long lastTimestamp = -1L;

        public long nextId()
        {
            lock (this)
            {
                long timestamp = timeGen();
                if (this.lastTimestamp == timestamp)
                { //同一微妙中生成ID
                    IdWorker.sequence = (IdWorker.sequence + 1) & IdWorker.sequenceMask; //用&运算计算该微秒内产生的计数是否已经到达上限
                    if (IdWorker.sequence == 0)
                    {
                        //一微妙内产生的ID计数已达上限,等待下一微妙
                        timestamp = tillNextMillis(this.lastTimestamp);
                    }
                }
                else
                { //不同微秒生成ID
                    IdWorker.sequence = 0; //计数清0
                }
                if (timestamp < lastTimestamp)
                { //如果当前时间戳比上一次生成ID时时间戳还小,抛出异常,因为不能保证现在生成的ID之前没有生成过
                    throw new Exception(string.Format("Clock moved backwards.  Refusing to generate id for {0} milliseconds",
                        this.lastTimestamp - timestamp));
                }
                this.lastTimestamp = timestamp; //把当前时间戳保存为最后生成ID的时间戳
                long nextId = (timestamp - twepoch << timestampLeftShift) | IdWorker.workerId << IdWorker.workerIdShift | IdWorker.sequence;
                return nextId;
            }
        }

        /// <summary>
        /// 获取下一微秒时间戳
        /// </summary>
        /// <param name="lastTimestamp"></param>
        /// <returns></returns>
        private long tillNextMillis(long lastTimestamp)
        {
            long timestamp = timeGen();
            while (timestamp <= lastTimestamp)
            {
                timestamp = timeGen();
            }
            return timestamp;
        }

        /// <summary>
        /// 生成当前时间戳
        /// </summary>
        /// <returns></returns>
        private long timeGen()
        {
            return (long)(DateTime.UtcNow - new DateTime(1970, 1, 1, 0, 0, 0, DateTimeKind.Utc)).TotalMilliseconds;
        }
    }
复制代码
复制代码

 

JAVA版本

 

复制代码
复制代码
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.stereotype.Component;

public class IdWorker {

    protected static final Logger LOG = LoggerFactory.getLogger(IdWorker.class);

    private long workerId;
    private long datacenterId;
    private long sequence = 0L;

    private long twepoch = 1288834974657L;

    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    private long sequenceBits = 12L;

    private long workerIdShift = sequenceBits;
    private long datacenterIdShift = sequenceBits + workerIdBits;
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private long sequenceMask = -1L ^ (-1L << sequenceBits);

    private long lastTimestamp = -1L;

    public IdWorker(long workerId, long datacenterId) {
        // sanity check for workerId
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
        LOG.info(String.format("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId));
    }

    public synchronized long nextId() {
        long timestamp = timeGen();

        if (timestamp < lastTimestamp) {
            LOG.error(String.format("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp));
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }

        lastTimestamp = timestamp;

        return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
    }

    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    protected long timeGen() {
        return System.currentTimeMillis();
    }


}
复制代码
复制代码

 

 

 
 
分类: ASP.NET, JAVA
 
 
本文转自左正博客园博客,原文链接: http://www.cnblogs.com/soundcode/p/7199356.html,如需转载请自行联系原作者
 
相关文章
|
6月前
|
算法
雪花算法id生成器
雪花算法id生成器
427 0
|
6月前
|
算法 Java
雪花算法生成id
雪花算法生成id
|
3月前
|
算法 Go
[go 面试] 雪花算法与分布式ID生成
[go 面试] 雪花算法与分布式ID生成
|
3月前
|
SQL 算法 Serverless
B端算法实践问题之使用concat_id算子获取用户最近点击的50个商品ID如何解决
B端算法实践问题之使用concat_id算子获取用户最近点击的50个商品ID如何解决
26 1
|
3月前
|
算法 NoSQL 中间件
go语言后端开发学习(六) ——基于雪花算法生成用户ID
本文介绍了分布式ID生成中的Snowflake(雪花)算法。为解决用户ID安全性与唯一性问题,Snowflake算法生成的ID具备全局唯一性、递增性、高可用性和高性能性等特点。64位ID由符号位(固定为0)、41位时间戳、10位标识位(含数据中心与机器ID)及12位序列号组成。面对ID重复风险,可通过预分配、动态或统一分配标识位解决。Go语言实现示例展示了如何使用第三方包`sonyflake`生成ID,确保不同节点产生的ID始终唯一。
go语言后端开发学习(六) ——基于雪花算法生成用户ID
|
3月前
|
存储 算法 数据挖掘
技术分享:从雪花算法生成订单ID的抉择与反思
【8月更文挑战第17天】在软件开发的浩瀚征途中,技术选型如同航海中的罗盘,指引着项目前进的方向。今天,我想与大家分享一段关于“用雪花算法生成订单ID,现在我有点后悔了”的亲身经历,希望通过这段故事,为大家在技术选型时提供一些参考与启示。
88 0
|
4月前
|
文字识别 算法 Java
文本,保存图片09,一个可以用id作为图片名字的pom插件,利用雪花算法生成唯一的id
文本,保存图片09,一个可以用id作为图片名字的pom插件,利用雪花算法生成唯一的id
|
5月前
|
算法 数据中心 Python
基于python雪花算法工具类Snowflake-来自chatGPT
基于python雪花算法工具类Snowflake-来自chatGPT
119 4
|
5月前
|
算法 PHP 数据中心
基于php雪花算法工具类Snowflake -来自chatGPT
基于php雪花算法工具类Snowflake -来自chatGPT
104 2
|
5月前
|
算法 数据中心 C++
基于C++雪花算法工具类Snowflake -来自chatGPT
基于C++雪花算法工具类Snowflake -来自chatGPT