python/pandas数据分析(十六)- 数据索引与选取

简介: 我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。 其对应使用的方法如下: 一.

我们对 DataFrame 进行选择,大抵从这三个层次考虑:行列、区域、单元格。
其对应使用的方法如下:
一. 行,列 –> df[]
二. 区域 –> df.loc[], df.iloc[], df.ix[]
三. 单元格 –> df.at[], df.iat[]

  1. df[]:
    一维
    行维度:
    整数切片、标签切片、<布尔数组>
    列维度:
    标签索引、标签列表、Callable
df[:3]
df['a':'c']
df[[True,True,True,False,False,False]] # 前三行(布尔数组长度等于行数)
df[df['A']>0] # A列值大于0的行
df[(df['A']>0) | (df['B']>0)] # A列值大于0,或者B列大于0的行
df[(df['A']>0) & (df['C']>0)] # A列值大于0,并且C列大于0的行
  1. df.loc[]
    二维,先行后列
    行维度:
    标签索引、标签切片、标签列表、<布尔数组>、Callable
    列维度:
    标签索引、标签切片、标签列表、<布尔数组>、Callable
df.loc['a', :]
df.loc['a':'d', :]
df.loc[['a','b','c'], :]
df.loc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.loc[df['A']>0, :]
df.loc[df.loc[:,'A']>0, :]
df.loc[df.iloc[:,0]>0, :]
df.loc[lambda _df: _df.A > 0, :]
df.loc[:, 'A']
df.loc[:, 'A':'C']
df.loc[:, ['A','B','C']]
df.loc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.loc[:, df.loc['a']>0]          # a行大于0的列
df.loc[:, df.iloc[0]>0]           # 0行大于0的列
df.loc[:, lambda _df: ['A', 'B']]

df.A.loc[lambda s: s > 0]
  1. df.iloc[]
    二维,先行后列
    行维度:
    整数索引、整数切片、整数列表、<布尔数组>
    列维度:
    整数索引、整数切片、整数列表、<布尔数组>、Callable
df.iloc[3, :]
df.iloc[:3, :]
df.iloc[[0,2,4], :]
df.iloc[[True,True,True,False,False,False], :] # 前三行(布尔数组长度等于行数)
df.iloc[df['A']>0, :]       #× 为什么不行呢?想不通!
df.iloc[df.loc[:,'A']>0, :] 
df.iloc[df.iloc[:,0]>0, :]  
df.iloc[lambda _df: [0, 1], :]


df.iloc[:, 1]
df.iloc[:, 0:3]
df.iloc[:, [0,1,2]]
df.iloc[:, [True,True,True,False]] # 前三列(布尔数组长度等于行数)
df.iloc[:, df.loc['a']>0] 
df.iloc[:, df.iloc[0]>0]  
df.iloc[:, lambda _df: [0, 1]]
  1. df.ix[]
    二维,先行后列
    行维度:
    整数索引、整数切片、整数列表、
    标签索引、标签切片、标签列表、
    <布尔数组>、
    Callable
    列维度:
    整数索引、整数切片、整数列表、
    标签索引、标签切片、标签列表、
    <布尔数组>、
    Callable
f.ix[0, :]
df.ix[0:3, :]
df.ix[[0,1,2], :]

df.ix['a', :]
df.ix['a':'d', :]
df.ix[['a','b','c'], :]

df.ix[:, 0]
df.ix[:, 0:3]
df.ix[:, [0,1,2]]

df.ix[:, 'A']
df.ix[:, 'A':'C']
df.ix[:, ['A','B','C']]
目录
相关文章
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
445 0
|
3月前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
204 3
|
5月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
636 0
|
2月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
3月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
4月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
5月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
156 4
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
324 2
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
362 0
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
294 2

推荐镜像

更多