SQL Left Join, Right Join, Inner Join, and Natural Join 各种Join小结

简介:

在SQL语言中,存在着各种Join,有Left Join, Right Join, Inner Join, and Natural Join等,对于初学者来说肯定一头雾水,都是神马跟神马啊,它们之间到底有着怎样的区别和联系呢,我们先用一张图片来说明:

 

 

上面这张图很好的阐释了Left Join, Right Join, Inner Join,和Full Outer Join的区别,下面用我们用一个简单的例子来帮助我们理解和区分,现在有两个表Person和Address:

-- Table Person 
+----------+-----------+----------+
| PersonId | FirstName | LastName |
+----------+-----------+----------+
|        1 | Zhang     | San      |
|        2 | Li        | Si       |
|        3 | Wang      | Wu       |
|        4 | Yang      | Liu      |
+----------+-----------+----------+
-- Table Address
+-----------+----------+---------------+-------+
| AddressId | PersonId | City          | State |
+-----------+----------+---------------+-------+
|         1 |        2 | San Francisco | CA    |
|         2 |        3 | Los Angeles   | CA    |
|         3 |        1 | San Diego     | CA    |
+-----------+----------+---------------+-------+

我们下面一个一个的来看:

Left Join: returns all rows from the left table (table1), with the matching rows in the right table (table2). The result is NULL in the right side when there is no match.

左交:返回左表的所有行和匹配的右表的行,如果没有匹配上的用NULL.

SELECT * FROM Person LEFT JOIN Address ON Person.PersonId = Address.PersonId;
+----------+-----------+----------+-----------+----------+---------------+-------+
| PersonId | FirstName | LastName | AddressId | PersonId | City          | State |
+----------+-----------+----------+-----------+----------+---------------+-------+
|        2 | Li        | Si       |         1 |        2 | San Francisco | CA    |
|        3 | Wang      | Wu       |         2 |        3 | Los Angeles   | CA    |
|        1 | Zhang     | San      |         3 |        1 | San Diego     | CA    |
|        4 | Yang      | Liu      |      NULL |     NULL | NULL          | NULL  |
+----------+-----------+----------+-----------+----------+---------------+-------+

Right Join: returns all rows from the right table (table2), with the matching rows in the left table (table1). The result is NULL in the left side when there is no match.

右交:返回右表的所有行和匹配的左表的行,如果没有匹配上的用NULL.

SELECT * FROM Person RIGHT JOIN Address ON Person.PersonId = Address.PersonId;
+----------+-----------+----------+-----------+----------+---------------+-------+
| PersonId | FirstName | LastName | AddressId | PersonId | City          | State |
+----------+-----------+----------+-----------+----------+---------------+-------+
|        1 | Zhang     | San      |         3 |        1 | San Diego     | CA    |
|        2 | Li        | Si       |         1 |        2 | San Francisco | CA    |
|        3 | Wang      | Wu       |         2 |        3 | Los Angeles   | CA    |
|     NULL | NULL      | NULL     |         4 |        5 | Memphis       | TN    |
+----------+-----------+----------+-----------+----------+---------------+-------+

Inner Join: selects all rows from both tables as long as there is a match between the columns in both tables.

内交: 选择左右表中关键字匹配上的行。

SELECT * FROM Person INNER JOIN Address ON Person.PersonId = Address.PersonId;
+----------+-----------+----------+-----------+----------+---------------+-------+
| PersonId | FirstName | LastName | AddressId | PersonId | City          | State |
+----------+-----------+----------+-----------+----------+---------------+-------+
|        1 | Zhang     | San      |         3 |        1 | San Diego     | CA    |
|        2 | Li        | Si       |         1 |        2 | San Francisco | CA    |
|        3 | Wang      | Wu       |         2 |        3 | Los Angeles   | CA    |
+----------+-----------+----------+-----------+----------+---------------+-------+

Full Join: returns all rows from the left table (table1) and from the right table (table2), and it combines the result of both LEFT and RIGHT joins.

全交: 返回左表的所有行和右表的所有行,是左交和右交的联合。

注意,由于MySql中没有Full Join命令,所以我们通过把Left Join和Right Join的结果Union起来也是可以的:

SELECT * FROM Person LEFT JOIN Address ON Person.PersonId = Address.PersonId
UNION
SELECT * FROM Person RIGHT JOIN Address ON Person.PersonId = Address.PersonId;
+----------+-----------+----------+-----------+----------+---------------+-------+
| PersonId | FirstName | LastName | AddressId | PersonId | City          | State |
+----------+-----------+----------+-----------+----------+---------------+-------+
|        2 | Li        | Si       |         1 |        2 | San Francisco | CA    |
|        3 | Wang      | Wu       |         2 |        3 | Los Angeles   | CA    |
|        1 | Zhang     | San      |         3 |        1 | San Diego     | CA    |
|        4 | Yang      | Liu      |      NULL |     NULL | NULL          | NULL  |
|     NULL | NULL      | NULL     |         4 |        5 | Memphis       | TN    |
+----------+-----------+----------+-----------+----------+---------------+-------+

Natural Join: creates an implicit join clause for you based on the common columns in the two tables being joined. Common columns are columns that have the same name in both tables. A NATURAL JOIN can be an INNER join, a LEFT OUTER join, or a RIGHT OUTER join. The default is INNER join.

自然交: 根据左右两表的相同列创建一个隐含的join操作,相同列就是两表中列名相同的两列。自然交可以是内交,左交或者是右交。默认是内交。

SELECT * FROM Person NATURAL JOIN Address;
+----------+-----------+----------+-----------+---------------+-------+
| PersonId | FirstName | LastName | AddressId | City          | State |
+----------+-----------+----------+-----------+---------------+-------+
|        1 | Zhang     | San      |         3 | San Diego     | CA    |
|        2 | Li        | Si       |         1 | San Francisco | CA    |
|        3 | Wang      | Wu       |         2 | Los Angeles   | CA    |
+----------+-----------+----------+-----------+---------------+-------+

最后注意一下,下面等号左右两边的关键字是等价的:

A LEFT JOIN B      =       A LEFT OUTER JOIN B
A RIGHT JOIN B     =       A RIGHT OUTER JOIN B
A FULL JOIN B      =       A FULL OUTER JOIN B
A INNER JOIN B     =       A JOIN B

本文转自博客园Grandyang的博客,原文链接:各种Join小结SQL Left Join, Right Join, Inner Join, and Natural Join ,如需转载请自行联系原博主。

相关文章
|
2月前
|
SQL
SQL JOIN
【11月更文挑战第06天】
51 4
图解 SQL 里的各种 JOIN
用文氏图表示 SQL 里的各种 JOIN,一下子就理解了。
60 2
Hadoop-11-MapReduce JOIN 操作的Java实现 Driver Mapper Reducer具体实现逻辑 模拟SQL进行联表操作
Hadoop-11-MapReduce JOIN 操作的Java实现 Driver Mapper Reducer具体实现逻辑 模拟SQL进行联表操作
61 3
Struts 2 携手 RESTful:颠覆传统,重塑Web服务新纪元的史诗级组合!
【8月更文挑战第31天】《Struts 2 与 RESTful 设计:构建现代 Web 服务》介绍如何结合 Struts 2 框架与 RESTful 设计理念,构建高效、可扩展的 Web 服务。Struts 2 的 REST 插件提供简洁的 API 和约定,使开发者能快速创建符合 REST 规范的服务接口。通过在 `struts.xml` 中配置 `<rest>` 命名空间并使用注解如 `@Action`、`@GET` 等,可轻松定义服务路径及 HTTP 方法。
77 0
"SQL JOIN大揭秘:解锁多表联合查询的终极奥义,从内到外,左至右,全连接让你数据世界畅通无阻!"
【8月更文挑战第31天】在数据库领域,数据常分散在多个表中,而SQL JOIN操作如同桥梁,连接这些孤岛,使数据自由流动,编织成复杂的信息网络。本文通过对比内连接、左连接、右连接和全连接的不同类型,并结合示例代码,展示SQL JOIN的强大功能。掌握JOIN技术不仅能高效查询数据,更是数据分析和数据库管理的关键技能。
151 0
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
6月前
|
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
163 13
|
6月前
|
SQL
解锁 SQL Server 2022的时间序列数据功能
【7月更文挑战第14天】要解锁SQL Server 2022的时间序列数据功能,可使用`generate_series`函数生成整数序列,例如:`SELECT value FROM generate_series(1, 10)。此外,`date_bucket`函数能按指定间隔(如周)对日期时间值分组,这些工具结合窗口函数和其他时间日期函数,能高效处理和分析时间序列数据。更多信息请参考官方文档和技术资料。
对比 SQL Server中的VARCHAR(max) 与VARCHAR(n) 数据类型
【7月更文挑战7天】SQL Server 中的 VARCHAR(max) vs VARCHAR(n): - VARCHAR(n) 存储最多 n 个字符(1-8000),适合短文本。 - VARCHAR(max) 可存储约 21 亿个字符,适合大量文本。 - VARCHAR(n) 在处理小数据时性能更好,空间固定。 - VARCHAR(max) 对于大文本更合适,但可能影响性能。 - 选择取决于数据长度预期和业务需求。
548 1
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等