隐马尔可夫模型(三)——隐马尔可夫模型的评估问题(前向算法)

简介:

隐马模型的评估问题即,在已知一个观察序列O=O1O2...OT,和模型μ=(A,B,π}的条件下,观察序列O的概率,即P(O|μ}

                   

      如果穷尽所有的状态组合,即S1S1...S1, S1S1...S2, S1S1...S3, ..., S3S3...S3。这样的话t1时刻有N个状态,t2时刻有N个状态...tT时刻有N个状态,这样的话一共有N*N*...*N= NT种组合,时间复杂度为O(NT),计算时,就会出现“指数爆炸”,当T很大时,简直无法计算这个值。为解决这一问题,Baum提出了前向算法。

      归纳过程

      首先引入前向变量αt(i):在时间t时刻,HMM输出序列为O1O2...OT,在第t时刻位于状态si的概率。

      当T=1时,输出序列为O1,此时计算概率为P(O1|μ):假设有三个状态(如下图)1、2、3,输出序列为O1,有三种可能一是状态1发出,二是从状态2发出,三是从状态3发出。另外从状态1发出观察值O1得概率为b1(O1),从状态2发出观察值O1得概率为b2(O1),从状态3发出观察值O1得概率为b3(O1)。因此可以算出

     P(O1|μ)= π1*b1(O1)+π2*b2(O1) +  π3*b3(O1)= α1(1) + α1(2) + α1(3)

                                     

      当T=2时,输出序列为O1O2,此时计算概率为P(O1O2|μ):假设有三个状态(如下图)1、2、3,输出序列为O1,有三种可能一是状态1发出,二是从状态2发出,三是从状态3发出。另外从状态1发出观察值O2得概率为b1(O2),从状态2发出观察值O2得概率为b2(O2),从状态3发出观察值O2得概率为b3(O2)。

      要是从状态1发出观察值O2,可能从第一时刻的1、2或3状态装换过来,要是从状态1转换过来,概率为α1(1)*a11*b1(O2),要是从状态2转换过来,概率为α1(2)*a21*b1(O2),要是从状态3转换过来,概率为α1(3)*a31*b1(O2),因此

     P(O1O2,q2=s1|μ)= α1(1)*a11*b1(O2)  + α1(2)*a21*b1(O2) + α1(3)*a31*b1(O2)=α2(1)

                                     

      同理:P(O1O2,q2=s1|μ)= α1(1)*a12*b2(O2)  + α1(2)*a22*b2(O2) + α1(3)*a32*b2(O2)=α2(2)

               P(O1O2,q2=s1|μ)= α1(1)*a13*b1(O2)  + α1(2)*a23*b3(O2) + α1(3)*a33*b3(O2)=α2(3)

     所以:P(O1O2|μ)=P(O1O2,q2=s1|μ)+ P(O1O2,q2=s1|μ)+ P(O1O2,q2=s1|μ)

                             =α2(1) + α2(2) + α2(3)

      以此类推。。。

      前向算法

       step1 初始化:α1(i) = πi*bi(O1), 1≤i≤N

       step2 归纳计算:

                           

       step3 终结:

                      P(O|μ)=

      时间复杂度

      计算某时刻的某个状态的前向变量需要看前一时刻的N个状态,此时时间复杂度为O(N),每个时刻有N个状态,此时时间复杂度为N*O(N)=O(N2),又有T个时刻,所以时间复杂度为T*O(N2)=O(N2T)。

      程序例证

       

        前向算法计算P(O|M):

        step1:α1(1) =π1*b1(red)=0.2*0.5=0.1          α1(2)=π2*b2(red)==0.4*0.4= 0.16          α1(3)=π3*b3(red)==0.4*0.7=0.21

        step2:α2(1)=α1(1)*a11*b1(white) + α1(2)*a21*b1(white) + α1(3)*a31*b1(white)

                     ...

        step3:P(O|M) = α3(1)+α3(2)+α3(3)

        程序代码

复制代码
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int main()
{
        float a[3][3] = {{0.5,0.2,0.3},{0.3,0.5,0.2},{0.2,0.3,0.5}};
        float b[3][2] = {{0.5,0.5},{0.4,0.6},{0.7,0.3}};
        float alpha[4][3];
        int i,j,k, count = 1;
        //output list
        int list[4] = {0,1,0,1};
        //step1:Initialization
        alpha[0][0] = 0.2 * 0.5;
        alpha[0][1] = 0.4 * 0.4;
        alpha[0][2] = 0.4 * 0.7;
        //step2:iteration
        for (i=1; i<=3; i++)
        {
            for(j=0; j<=2; j++)
            {
                alpha[i][j] = 0;
                for(k=0; k<=2; k++)
                {
                   alpha[i][j] += alpha[i-1][k] * a[k][j] * b[j][list[count]];
                }
            }
            count += 1;
        }
       for (i=0; i<=3; i++)
        {
            for(j=0; j<=2; j++)
            {
                printf("a[%d][%d]=%f\n",i+1,j+1,alpha[i][j]);
            }
        }
       //step3:end
       printf("Forward:%f\n", alpha[3][0]+alpha[3][1]+alpha[3][2]);
       return 0;
}
复制代码

     运行结果

                 

 





本文转自jihite博客园博客,原文链接:http://www.cnblogs.com/kaituorensheng/archive/2012/12/01/2797230.html,如需转载请自行联系原作者


相关文章
|
9月前
|
机器学习/深度学习 数据采集 人工智能
机器学习基础知识——基本原理、常用算法与评估指标
机器学习基础知识——基本原理、常用算法与评估指标
266 0
|
11天前
|
机器学习/深度学习 算法
GBDT算法超参数评估(一)
GBDT(Gradient Boosting Decision Tree)是一种强大的机器学习技术,用于分类和回归任务。超参数调整对于发挥GBDT性能至关重要。其中,`n_estimators`是一个关键参数,它决定了模型中弱学习器(通常是决策树)的数量。增加`n_estimators`可以提高模型的复杂度,提升预测精度,但也可能导致过拟合,并增加训练时间和资源需求。
|
11天前
|
机器学习/深度学习 算法
GBDT算法超参数评估(二)
GBDT算法超参数评估关注决策树的不纯度指标,如基尼系数和信息熵,两者衡量数据纯度,影响树的生长。默认使用基尼系数,计算快速,而信息熵更敏感但计算慢。GBDT的弱评估器默认最大深度为3,限制了过拟合,不同于随机森林。由于Boosting的内在机制,过拟合控制更多依赖数据和参数如`max_features`。相比Bagging,Boosting通常不易过拟合。评估模型常用`cross_validate`和`KFold`交叉验证。
|
21天前
|
搜索推荐 算法 UED
基于Python的推荐系统算法实现与评估
本文介绍了推荐系统的基本概念和主流算法,包括基于内容的推荐、协同过滤以及混合推荐。通过Python代码示例展示了如何实现基于内容的推荐和简化版用户-用户协同过滤,并讨论了推荐系统性能评估指标,如预测精度和覆盖率。文章强调推荐系统设计的迭代优化过程,指出实际应用中需考虑数据稀疏性、冷启动等问题。【6月更文挑战第11天】
72 3
|
6天前
|
算法 物联网 调度
操作系统调度算法的演进与性能评估
本文深入探讨了操作系统中进程调度算法的发展轨迹,从早期的先来先服务(FCFS)到现代的多级队列和反馈控制理论。通过引用实验数据、模拟结果和理论分析,文章揭示了不同调度策略如何影响系统性能,特别是在响应时间、吞吐量和公平性方面。同时,本文也讨论了在云计算和物联网等新兴领域,调度算法面临的挑战和未来的发展方向。
|
15天前
|
人工智能 算法 网络性能优化
【调度算法】服务组合优选问题的指标选择与评估
【调度算法】服务组合优选问题的指标选择与评估
19 0
|
2月前
|
数据采集 算法 安全
数据分享|R语言关联规则挖掘apriori算法挖掘评估汽车性能数据
数据分享|R语言关联规则挖掘apriori算法挖掘评估汽车性能数据
|
2月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】关联模式评估方法及Apriori算法超市购物应用实战(超详细 附源码)
【数据挖掘】关联模式评估方法及Apriori算法超市购物应用实战(超详细 附源码)
118 0
|
10月前
|
机器学习/深度学习 算法
评估系统或算法质量的重要指标
准确性(Accuracy):衡量系统或算法输出结果与真实结果之间的接近程度。通常使用分类准确率、回归误差等指标来评估。 精确率(Precision)和召回率(Recall):主要用于评估分类模型的性能。精确率衡量预测为正例的样本中实际为正例的比例,召回率衡量实际为正例的样本中被正确预测为正例的比例。
202 4
|
10月前
|
数据采集 机器学习/深度学习 监控
文档管理系统的未来:决策树算法的性能评估与优化
决策树算法在文档管理系统中的应用主要是用于识别用户的操作行为,例如鼠标点击、键盘输入等。在实际应用中,决策树算法的性能表现受到多个因素的影响,包括数据集的大小、特征数量、树的深度等。
176 0